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A B S T R A C T 

Objective(s): This study aimed to create a deep learning (DL)-based denoising 
model using a residual neural network (Res-Net) trained to reduce noise in ring-
type dedicated breast positron emission tomography (dbPET) images acquired in 
about half the emission time, and to evaluate the feasibility and the effectiveness of 
the model in terms of its noise reduction performance and preservation of 
quantitative values compared to conventional post-image filtering techniques. 
Methods: Low-count (LC) and full-count (FC) PET images with acquisition 
durations of 3 and 7 minutes, respectively, were reconstructed. A Res-Net was 
trained to create a noise reduction model using fifteen patients’ data. The inputs to 
the network were LC images and its outputs were denoised PET (LC + DL) images, 
which should resemble FC images. To evaluate the LC + DL images, Gaussian and 
non-local mean (NLM) filters were applied to the LC images (LC + Gaussian and LC 
+ NLM, respectively). To create reference images, a Gaussian filter was applied to 
the FC images (FC + Gaussian). The usefulness of our denoising model was 
objectively and visually evaluated using test data set of thirteen patients. The 
coefficient of variation (CV) of background fibroglandular tissue or fat tissue were 
measured to evaluate the performance of the noise reduction. The SUVmax and 
SUVpeak of lesions were also measured. The agreement of the SUV measurements 
was evaluated by Bland–Altman plots. 
Results: The CV of background fibroglandular tissue in the LC + DL images was 
significantly lower (9.10±2.76) than the CVs in the LC (13.60±  3.66) and LC + 
Gaussian images (11.51±  3.56). No significant difference was observed in both 
SUVmax and SUVpeak of lesions between LC + DL and reference images. For the visual 
assessment, the smoothness rating for the LC + DL images was significantly better 
than that for the other images except for the reference images. 
Conclusion: Our model reduced the noise in dbPET images acquired in about half 
the emission time while preserving quantitative values of lesions. This study 
demonstrates that machine learning is feasible and potentially performs better 
than conventional post-image filtering in dbPET denoising. 
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Introduction 
   Malignant tumors are often detected and 
staged using [18F]fluorodeoxyglucose ([18F]FDG) 
positron emission tomography (PET) (1).   [18F]FDG 
PET is also used for staging or re-staging breast 
cancer as well as predicting the response to  

 
 
therapy and diagnosing recurrence in breast 
cancer patients (2-5). However, whole body 
PET (WB-PET) may have a reduced ability to 
detect small (<10 mm) breast cancer tumors (6, 
7). A recent study also reported that the 
sensitivity of dbPET was higher for tumors 
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smaller than 10 mm compared to WB-PET (8). 
In addition, partial volume effects (PVE) in PET  
image occurs whenever the tumor size is less 
than three times the full width half maximum 
(FWHM) of the spatial resolution (9). The 
FWHM of the spatial resolution of commercially 
available WB-PET systems is reported to be 4.0-
5.0 mm (10, 11). Because of the limited spatial 
resolution of WB-PET, the quantitative values of 
small tumors are affected by PVE (12). 
   To overcome those limitations, high-
resolution breast PET scanners have been 
developed. These systems have been used to 
detect breast cancer lesions, diagnose intra-
mammary spread, assess the morphological 
details of tumors, and metabolic information 
(13). There are two types of high-resolution 
breast PET scanners: positron emission 
mammography (PEM) (14) and ring-type 
dedicated breast PET (dbPET) (15). PEM provides 
limited-angle tomographic images using two 
planar or curved detectors, whereas dbPET 
provides fully tomographic images of the breast 
with a ring-shaped detector (16). dbPET can 
provide PET images with higher spatial 
resolution than WB-PET because of the small 
size of the crystals, the proximity of the 
detectors to the breast and the reduction of non-
collinearity effects due to smaller ring 
diameters. Miyake et al reported that the FWHM 
of the spatial resolution of the dbPET system is 
0.8-1.3 mm when reconstructed with a clinically 
used reconstruction method (17). Because of 
the high spatial resolution of dbPET, it has been 
reported that the ability of dbPET to detect 
breast cancers smaller than 10 mm is better 
than that of WB-PET (8). A phantom study using 
microspheres less than 10 mm in diameter has 
also reported higher detectability with dbPET 
compared to WB-PET (18). In addition, Berg et 
al. previously reported that PEM had improved 
specificity compared with MRI (19). 
Furthermore, the usefulness of dbPET for 
evaluating the breast cancer response to 
neoadjuvant chemotherapy using the 
standardized uptake value (SUV) has also been 
reported (20). 
   Despite the high maximal sensitivity at the 
center of the axial field of view of the dbPET 
system, the dbPET images often have a high 
level of noise, especially around the edge of the 
detector, due to a decrease in effective counts 
near the edge (16). A reconstruction method 
that prioritizes improvement of specificity of 
detected uptake patterns can also increase 
image noise. The noise in the dbPET images may 
lead to the detection of a larger number of non-
pathologic uptake foci, and result in false-
positive diagnoses (21). Several methods can be 

used to suppress the noise of PET images, 
including increasing acquisition time, post-
image filtering, such as a Gaussian filter or non-
local mean (NLM) filter (22), and applying 
Bayesian penalized likelihood reconstruction 
algorithms (23). Longer scan times increase the 
probability of motion artifacts and physical 
burden on a patient, especially in dbPET, which 
scans the patient in a prone position. A Gaussian 
filter is sometimes used for dbPET image 
denoising, but it can remove details of the tumor 
structure (24). An NLM filter can reduce image 
noise while preserving image details, but it 
requires some parameters to be optimized. 
Bayesian penalized likelihood reconstruction 
algorithms also need a regularization 
parameter to be set to control noise and 
preserve edges, and a bad optimization of this 
parameter leads to over-smoothed images. 
   Recently, machine learning methods for PET 
denoising, such as those based on convolutional 
neural networks and U-Net (25, 26), have 
achieved improvements in both objective and 
subjective assessment. However, to our 
knowledge, no study has used machine learning 
for noise reduction in dbPET images, which 
have a higher spatial resolution than WB-PET. 
U-Net has occasionally been used for PET image 
denoising, but this architecture may cause 
blurred images due to the down-sampling and 
up-sampling, despite the use of skip 
connections (25-27). Blur in images is a 
problem, especially for dbPET, which requires 
high spatial resolution. Convolution filters with 
large kernel size increase the receptive field size 
without down-sampling and up-sampling, thus 
avoid blurring (28). A residual neural network 
(Res-Net) also prevents the blurring of images 
in machine learning-based denoising (29, 30). 
   In this study, we created a deep learning (DL)-
based denoising model using a Res-Net with 
large kernel size of convolution filters that was 
trained to reduce noise in dbPET images 
acquired in about half the emission time. We 
evaluated the usefulness of the model in terms 
of its noise reduction performance and 
preservation of quantitative values by 
comparing it with conventional post-image 
filtering. 
 

Methods 
Patient data 
   A total of twenty-eight consecutive patients 
with known or suspected breast cancers who 
underwent dbPET scan from February 2021 to 
December 2021 were included in this study. 
Patients fasted at least 4 h prior to 
administration of [18F]FDG (3.5 MBq/kg) and 
were scanned 90 minutes after administration. 
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PET data were acquired in three-dimensional 
(3D) list mode for 7 minutes per breast using a 
dbPET scanner (Elmammo Avant Class, 
Shimadzu Corp., Kyoto, Japan). We also 
acquired 3 minutes of PET data from the list 
data. Low-count (LC) and full-count (FC) PET 
images with acquisition durations of 3 and 7 
minutes, respectively, were reconstructed with 
the 3D list mode dynamic row-action 
maximum-likelihood algorithm (DRAMA) using 
one iteration, 128 subsets, and a relaxation 
control parameter of β =20 for all data sets. No 
post-smoothing was applied to the PET images. 
The matrix size was 236×132 with pixel sizes of 
0.78×0.78 mm, and the slice thickness was 0.78 
mm. Scatter correction was conducted using the 
convolution-subtraction method. Attenuation 
correction was performed using calculated 
uniform attenuation maps created from tissue 
boundaries estimated from the emission data. 
This study was performed in line with the 
principles of the Declaration of Helsinki. 
Approval was granted by the Ethics Committee 
of Kyoto University Graduate School and 
Faculty of Medicine (Approval number, R3034). 
Informed consent was waived by the Ethics 

Committee of Kyoto University Graduate School 
and Faculty of Medicine due to the retrospective 
design. 
 
Network architecture 
   Our network structure was similar to the Res-
Net used in a prior study (30). Skip connection 
from input-end to output-end was used in this 
architecture to compensate the lost details and 
to perform residual learning simultaneously. 
The network architecture is shown in Figure 1 
and is composed of convolutional layers with a 
15×15 kernel size, batch normalization (BN) 
(31), and parametric rectified linear unit 
(PReLU) activation (32). BN was added between 
the convolution and PReLU layers. The number 
of filters for each convolutional layer was 128, 
and the spatial size of the network input was 
236×132. A larger receptive field size can make 
use of context information in a larger image 
region, and hence we adopted the large kernel 
size of 15×15. To avoid the problem of vanishing 
gradients that occurs the rectified linear unit 
(ReLU) activation function, we used PReLU as 
the activation function of the network. 

 

 
Figure 1. Network architecture employed in this study. The network was 
composed of five convolutional layers with a 15×15 kernel size, batch 
normalization (BN), and parametric rectified linear unit (PReLU) 

 
Network training 
   Fifteen patients’ data were used for training 
(6,372 images) and validation (708 images). We 
randomly reserved 10% of the training samples 
for validation data to monitor the performance 
of the network during training. The inputs for 
the network were two-dimensional (2D) LC 
images. The outputs were denoised 2D PET (LC 
+ DL) images, which should resemble the FC 
images. The network was trained for 100 
epochs and optimized using the Adam 
optimizer (33) to minimize the mean squared  

 
error (MSE). The batch size was 16, and a 
learning rate of 0.001 was used. The network 
was implemented using Keras with a 
TensorFlow backend (Google, Mountain View, 
California), and trained used a single NVIDIA 
GeForce RTX 2080Ti GPU (NVIDIA Corporation, 
Santa Clara, California). 
 
Comparison with conventional post-image 
filtering 
   To evaluate the incremental value of our 
denoising model, LC + DL images were compared 



 Itagaki K et al  dbPET denoising using Res-Net 

148  Asia Ocean J Nucl Med Biol. 2023; 11(2):145-157 

to dbPET images denoised by conventional post-
image filtering. Gaussian filter and an NLM filter 
were applied to the LC images (LC+Gaussian 
and LC+NLM, respectively). To create reference 
images, a Gaussian filter was also applied to the 
FC images to obtain the same reconstruction 
conditions as in our clinical setting 
(FC+Gaussian). The full width at half maximum 
of the Gaussian filter was 1.17 mm. For the NLM 
method, the patch size was 3×3, and the search 
window size was 5×5. The standard deviation of 
the Gaussian kernel used in the NLM method 
was set to be the standard deviation of the 
background fibroglandular tissue in breasts 
measured with the LC images. The other 
parameters of the NLM filter were determined 
based on previous reports (34, 35). 
 
Quantitative analysis 
   The performance of the noise reduction model 
was objectively evaluated using a test data set 
of thirteen patients with and without breast 
lesions. The SUVmean and coefficient of variation 
(CV) of the background fibroglandular tissue 
without lesions were measured to assess the 
noise level of the images. In addition, the CV of 
the background fibroglandular tissue or fat 
tissue at the edge of the FOV was also measured. 
For visually FDG-avid breast lesions that were 
histologically confirmed or highly suspicious on 
imaging modalities other than dbPET, the 
SUVmax and SUVpeak were measured to evaluate 
the effect of this model on the lesion uptake 
values. 
   The SUVmean and CV of the background 
fibroglandular tissue were obtained from five 
2D regions of interest (2D-ROIs) with a 
diameter of 8 mm per breast placed on 
background fibroglandular tissue. The CV of the 
background fibroglandular tissue or fat tissue at 
the edge of the FOV were obtained from five 2D-
ROIs of 10×30 pixel rectangles placed at 5 pixels 
from the FOV edge. Each ROI was placed in 5 
different slices, which are at least 5 slices apart 

from each other to include as wide range of 
background fibroglandular tissue or fat tissue 
as possible (Figure 2). The SUVmean is an average 
of SUV within the 2D-ROI, and the CV was 
calculated using the following equation. 
 

 𝐶𝑉 =
𝜎

𝑆𝑈𝑉𝑚𝑒𝑎𝑛
× 100 (%) 

 
   Here, 𝜎  is the standard deviation (SD) within 
the 2D-ROI. 
   The SUVmax of the lesions was obtained from a 
3D volume of interest (3D-VOI). The SUVpeak was 
defined as the average SUV, which was 
measured in a 2D-ROI with a fixed diameter of 
10 mm centered at the maximum value of the 
lesions. In addition, the agreement of the SUV 
measurements of the reference (FC + Gaussian) 
and each target image (LC, LC + Gaussian, LC + 
NLM, and LC + DL) was assessed. Relative 
differences were calculated for the SUVmax and 
SUVpeak using the FC + Gaussian images as 
reference, and the agreement was evaluated 
using Bland–Altman plots. The relative 
difference (d) between the reference and the 
target images was defined as the following 
equation. 
 

 𝑑 =
(𝑆𝑈𝑉𝑡𝑔𝑡−𝑆𝑈𝑉𝑟𝑒𝑓)

𝑆𝑈𝑉𝑟𝑒𝑓
× 100 (%) 

 
   Here, 𝑆𝑈𝑉𝑡𝑔𝑡 and 𝑆𝑈𝑉𝑟𝑒𝑓 are the SUV 

measurements obtained in the target and 
reference images, respectively. The bias and 
variance of the relative differences in the SUV 
measurements were defined as the mean and 

1.96×SD of d, respectively. 
   The lesions were classified into three types of 
uptake: focus, mass uptake (MU), and non-mass 
uptake (NMU), based on the 3D morphologic 
features with reference to a previous report (15). 
   All analyses were performed using MATLAB 
2021a (The MathWorks, Inc., Natick, Massa-
chusetts). 
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Figure 2. Placement of regions of interest (ROI) in the measurement of 
dbPET images. The SUVmean and CV of the background fibroglandular tissue 
were obtained from five 2D-ROIs with a diameter of 8 mm (yellow) and the 
CV of the background fibroglandular tissue or fat tissue at the edge of the 
FOV were obtained from five 2D-ROIs of 10×30 pixel rectangles placed at 5 
pixels from the FOV edge (red). Each ROI was placed in 5 different slices, 
which are at least 5 slices apart from each other to include as wide range of 
background fibroglandular tissue as possible 

 
Visual assessment 
   For the visual assessment, craniocaudal (CC) 
and mediolateral (ML) maximum intensity 
projection (MIP) images of test data sets were 
visually evaluated for smoothness (degree of 
the image noise) and lesion contrast between 
the mammary gland and lesions using a four-
point scale (0, not acceptable for diagnosis; 1, 
acceptable; 2, good; and 3, excellent) by an 
experienced nuclear medicine physician and an 
experienced PET technologist blinded to the 
reconstruction settings. For lesion contrast, 
FDG-avid breast lesions that were histologically 
confirmed or highly suspicious on imaging 
modalities other than dbPET were visually 
evaluated on CC or ML MIP images. The MIP 
images were displayed on an inverse grayscale 
with a standardized uptake range of 0–4. 
 
Statistical analysis 
   The SUVmean and CV of background fibro-
glandular tissue or fat tissue obtained for all 
image sets were compared using the paired t-
test with Bonferroni correction. The SUVmax and 
SUVpeak of the lesions in the reference images  

 
and target images were compared using the 
Wilcoxon signed rank test with Bonferroni 
correction. Differences in patient characteristics 
in the data sets was examined using the Mann–
Whitney U test and Fisher's exact test. Visual 
scores for all image sets were compared using 
the Wilcoxon paired ranked-sum test with 
Bonferroni correction. Inter-reader agreement 
was evaluated using Cohen’s kappa test. A p 
value of less than 0.05 was considered 
statistically significant for each analysis. The 
statistical analysis was performed using JMP® 
16.1.0 (SAS Institute Inc., Cary, NC, USA). 
 

Results 
   Table 1 summarizes the characteristics of 
fifteen patients (age range, 34–81 years; mean 
age, 65 years; number of lesions, 20) in the 
training and validation data sets and thirteen 
patients (age range, 49–82 years; mean age, 63 
years; number of lesions, 22) in the test data set. 
There was no significant difference between the 
two sets in terms of age and treatment prior to 
dbPET examinations. 

 
Table 1. Characteristics of the enrolled patients 

Characteristics Training + validation (n=15) Test (n=13) p value 

Age (mean±SD) 65±14.5 63±11.6 0.53 

Number of lesions 20 22  

Treatment prior to dbPET   1.00 

No treatment 12 11  

Neoadjuvant chemotherapy 2 1  

Surgery 1 1  

   For the reference and each of the target 
images, Figure 3 shows trans-axial images and 
Figure 4 shows CC MIP images. A subjective 
visual inspection revealed that the LC + DL 

image has lower noise levels than the LC image. 
The SUVmean of the background fibroglandular 
tissue in the LC + DL images was slightly higher 
(mean±SD [95%confidence interval (CI)], 
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1.18±0.33 [1.11–1.27]) than that in the LC, LC + 
Gaussian, and LC + NLM images (mean±SD 
[95% CI], 1.18±0.34 [1.10-1.27], 1.18±0.34 
[1.10–1.27] and 1.18±0.33 [1.10-1.26] 
respectively), whereas no significant difference 
in SUVmean was observed between the LC + DL 
and reference images (mean±SD [95% CI], 
1.19±0.33 [1.11-1.28]). The CV of the 
background fibroglandular tissue in the LC + DL 
images was significantly lower (mean±SD [95% 
CI], 9.10±2.76 [8.42–9.79]) than that in the LC, 
LC + Gaussian, and LC + NLM images (mean±SD 
[95% CI], 13.60±3.66 [12.69–14.51], 
11.51±3.56 [10.63–12.39]and 10.40±3.92 
[9.43–11.38], respectively), whereas no 
significant difference in CV was observed 

between the LC + DL and reference images 
(mean±SD [95% CI], 8.64±2.75 [7.96–9.32]). 
Figure 5 and Figure 6 show the SUVmean and CV 
of the background fibro-glandular tissue. The 
CV of the background fibroglandular tissue or 
fat tissue at the edge of the FOV in the LC + DL 
images was significantly lower (mean±SD [95% 
CI], 19.60±6.32 [18.03–21.16]) than that in the 
LC, LC + Gaussian, LC + NLM, and reference 
images (mean±SD [95% CI], 24.33±5.33 [23.00–
25.65], 22.22±5.55 [20.84–23.60], 21.24±5.78 
[19.81–22.67] and 21.88±6.33 [22.28–25.33], 
respectively). Figure 7 shows the CV of the 
background fibroglandular tissue or fat tissue at 
the edge of the FOV. 

 
 

 
Figure 3. Trans-axial images of the reference (FC + Gaussian) image (a) and LC (b), 
LC + Gaussian (c), LC + NLM (d), and LC + DL (e) target images. The LC + DL image 
has lower noise levels than the LC image 
 
 

 
Figure 4. Craniocaudal maximum intensity projection images of the reference 
(FC + Gaussian) image (a) and LC (b), LC + Gaussian (c), LC + NLM (d), and LC + 
DL (e) target images of a 52-year-old woman with invasive ductal carcinoma in 
the left breast. The LC + DL image has noise levels that are visually lower than 
those in the other images 
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Figure 5. SUVmean of background fibroglandular tissue. The SUVmean of 
the background fibroglandular tissue in the LC + DL images was slightly 
higher than that in the LC, LC + Gaussian, and LC + NLM images, whereas 
no significant difference in SUVmean was observed between the LC + DL 
and the reference (FC + Gaussian) images 

 
 

 
Figure 6. CV of background fibroglandular tissue. The CV of the 
background fibroglandular tissue in the LC + DL images was 
significantly lower than that in the LC, LC + Gaussian, and LC + NLM 
images (p<0.001), whereas no significant difference in CV was 
observed between the LC + DL and the reference (FC + Gaussian) 
images 
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Figure 7. CV of the background fibroglandular tissue or fat 
tissue at the edge of the FOV. The CV of the background 
fibroglandular tissue or fat tissue at the edge of the FOV in 
the LC + DL images was significantly lower than that in the 
LC, LC + Gaussian, LC + NLM, and reference (FC + Gaussian) 
images (p<0.001) 

 

   Quantitative assessment was performed for a 
total of twenty-two lesions in the test data set. 
The details of the lesions are listed in Table 2. 
Six lesions were focus lesions and sixteen were 
mass uptake lesions. 
   The SUVmax of the lesions for the LC (median, 
2.48; interquartile range (IQR), 4.39 to 12.51) 
and LC + NLM (median, 2.39; IQR, 4.39 to 12.51) 
images were significantly higher than those for 
the reference images (median, 1.70; IQR, 4.11 to 
12.02) (p<0.001, p<0.001, respectively), and no 
significant differences in SUVmax were observed 
for the LC + Gaussian (median, 2.20; IQR, 4.00 to 
11.93) and LC + DL images (median, 1.91; IQR, 
3.80 to 11.65) when compared with the 
reference images. The SUVpeak for the LC 
(median, 0.74; IQR, 1.69 to 8.22), LC + Gaussian 
(median, 0.73; IQR, 1.71 to 8.17), and LC + NLM  

 
(median, 0.72; IQR, 1.69 to 8.22) images were 
significantly higher than those for the reference 
images (median, 0.84; IQR, 1.67 to 8.72) 
(p<0.033, p<0.042, p<0.033, respectively), and 
no significant differences in SUVpeak were 
observed for the LC + DL images (median, 0.76; 
IQR, 1.70 to 8.75) when compared with the 
reference images. Table3 shows the results of 
the SUVmax and SUVpeak of the lesions. The 
relative differences for SUVmax and SUVpeak are 
shown in Bland– Altman plots in Figure 8 and 
Figure 9, respectively. The Bland–Altman plots 
show the lowest mean bias of the relative 
differences for SUVmax and SUVpeak (−0.07 % and 
0.80 %) in the LC + DL images. In the LC + DL 
images, the variance of the relative difference in 
SUVmax was the smallest, while that for SUVpeak 
was the largest. 

 
Table 2. Characteristics of the 22 lesions evaluated in the test data set 

Characteristics Number (%) or value 
Diagnosis 
Invasive ductal carcinoma* 14 (64.6) 
Ductal carcinoma in situ* 6 (27.3) 
Paget disease* 1 (4.5) 
Lymph node metastasis** 1 (4.5) 
Uptake type 
Focus 6 (27.3) 
Mass uptake 16 (72.7) 
Non- mass uptake 0 (0) 
SUVmax (mean±SD)*** 
All 9.95±8.15 
Focus 2.84±0.85 
Mass uptake 12.61±8.05 

 *Diagnosed based on the histopathological findings 
 **Diagnosed based on imaging studies 
*** SUVmax measured on the reference (FC + Gaussian) images 

 
 
 



dbPET denoising using Res-Net  Itagaki K et al 
 

Asia Ocean J Nucl Med Biol. 2023; 11(2):145-157  153 

Table 3. The results of the SUVmax and SUVpeak of the lesions 

Image sets 
Median (Interquartile range) 

SUVmax                                                                                                                           SUVpeak 
FC + Gaussian 1.70 (4.11-12.02) 0.84 (1.67-8.72) 

LC 2.48 (4.39-12.51) 0.74 (1.69-8.22) 
LC + Gaussian 2.20 (4.00-11.93) 0.73 (1.71-8.17) 

LC+NML 2.39 (4.39-12.51) 0.74 (1.69-8.22) 
LC + DL 1.91 (3.80-11.65) 0.76 (1.70-8.75) 

Data are presented as median and interquartile range 

 
Figure 8. Bland– Altman plot of the relative differences in the SUVmax of 
breast lesions between the reference (FC + Gaussian) images and the LC 
(a), LC + Gaussian (b), LC + NLM (c), and LC + DL (d) target images. The 
solid and dashed lines indicate the mean bias and variance, respectively. 
The bias and variance of the relative differences in the LC + DL images are 
smaller than those of the other images 

 
Figure 9. Bland– Altman plot of the relative differences in the SUVpeak of 
breast lesions between the reference (FC + Gaussian) images and the LC 
(a), LC + Gaussian (b), LC + NLM (c), and LC + DL (d) target images. The 
solid and dashed lines indicate the mean bias and variance, respectively. 
The bias of the relative differences in the LC + DL images is smaller than 
those of the other images 
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   Table 4 and 5 shows the results of the visual 
evaluation of smoothness and contrast for all 
image sets, respectively. The smoothness for the 
LC + DL images was significantly better than 
that for the other images except for the 
reference images (p<0.001). Furthermore, the 
smoothness for the reference images was 

significantly better than that for the other 
images except for the LC + DL images (p<0.001). 
The smoothness for the LC + NLM images was 
also significantly better than that for the LC + 
Gaussian images (p=0.003). No significant 
differences in the lesion contrast were observed 
in all image sets.

 
Table 4. Smoothness evaluated by visual assessment 

Visual score  
 FC + Gaussian LC LC + Gaussian LC+NML LC + DL 

0 8 (6.7) 16 (13.3) 14 (11.7) 22 (18.3) 4 (3.3) 
1 20 (16.7) 83 (69.2) 77 (64.2) 81 (67.5) 37 (30.8) 
2 87 (72.5) 21 (17.5) 29 (24.2) 17 (14.2) 73 (60.8) 
3 5 (4.2) 0 (0) 0 (0) 0 (0) 6 (5.0) 

kappa 0.15 0.20 0.22 0.18 0.29 
Data are presented as number (%) 
 
Table 5. Lesion contrast evaluated by visual assessment 

Visual score  
 FC + Gaussian LC LC + Gaussian LC+NML LC + DL 

0 1 (2.3) 0 (0) 0 (0) 0 (0) 0 (0) 
1 1 (2.3) 1 (2.3) 1 (2.3) 1 (2.3) 2 (4.5) 
2 1 (2.3) 2 (4.5) 2 (4.5) 2 (4.5) 1 (2.3) 
3 41 (93.2) 41 (93.2) 41 (93.2) 41 (93.2) 41 (93.2) 

kappa 0.31 0.31 0.31 0.31 0.65 
Data are presented as number (%) 

 
Discussion   
   The present study showed that the 
quantitative values of lesions could be 
preserved at less than half of the emission time 
when using the Res-Net model to reduce noise. 
   In [18F]FDG PET examinations, it is desirable 
to reduce the acquisition time or injected 
activity; however, an insufficient count will lead 
to an increase in image noise. The noise can 
influence diagnosis, decrease the detectability 
of small lesions, and affect the SUV 
measurement. In the present study, our model 
significantly reduced noise due to reduced 
acquisition time when compared with the use of 
a Gaussian and an NLM filter. A post-smoothing 
filter is usually adopted to reduce noise in PET 
images, but its performance is limited because it 
is designed to reduce Gaussian random noise, 
which is distinct from the noise in PET images 
(36, 37). Our model can effectively reduce the 
noise in PET images, which is characterized by 
a complex noise distribution. An NLM filter is 
mainly used to remove Gaussian noise and 
speckle noise. In addition, the use of this filter 
requires the standard deviation of the noise to 
be set, and an improper setting will lead to blur 
in the images (29). The dbPET system has the 
characteristic of low sensitivity at the edge of 
the detector (17), and noise distributions in the 
trans-axial images used as the input of our 
model vary with respect to the location in the 
plane. Therefore, we believe it is challenging to 
determine the optimal parameters for the NLM 
filter. The present study showed that our model,  

 
which uses a larger filter size than the model in 
a previous report (30), was able to capture 
more context information in a larger image 
region and efficiently reduce the levels of 
location-dependent noise (38, 39). 
   Our model slightly changed the SUVmean of the 
background fibroglandular tissue compared to 
the reference images, as well as the use of the 
NLM filter. Non-linear image processing (e.g., 
the NLM filter or deep learning based 
denoising) may result in a slight shift the mean 
value of the image, but we consider this to have 
minimal clinical impact. 
   Semiquantitative analysis using the SUV is 
used to diagnose malignancy as well as monitor 
the response to therapy of a breast tumor (2). In 
the present study, our model obtained the 
lowest bias of the relative differences for SUVmax 
and SUVpeak. We believe that noise reduction 
using our model removed the variability in 
quantitative values of the lesions, while 
maintaining the SUVmean of the background 
fibroglandular tissue. These results are 
consistent with those of a previous study on 
noise reduction for low-dose [18F]FDG PET 
images using a supervised deep learning model 
(40). Using our model, the variance of the 
relative difference for SUVmax was the smallest, 
whereas that for SUVpeak was the largest. The 
SUVpeak was measured in an ROI centered at the 
maximum value of the lesions; therefore, the 
position of the ROI was not always identical 
among the images. In some cases, noise 
reduction with our model may have caused the  
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position of the ROI to change with respect to the 
ROI in the reference images, which also has a 
degree of noise, resulting in an increase in the 
variability of the relative difference in SUVpeak. 
   A Gaussian filter leads to a slight decrease in 
SUVmax of lesions due to blurring. In this study, 
our model was trained using the image sets 
without a Gaussian filter, but denoised images 
obtained using our model exhibited comparable 
quantitative values to the reference images with 
a Gaussian filter. The network used in this study 
was trained with the MSE as a loss function, 
which is known to introduce slight blurring in 
the network output (25). In medical imaging, 
there are some reports that using the structural 
similarity index and perceptual loss as a loss 
function may improve the result and should be 
considered in future (41- 43). 
   The model used in this study consisted of 
fewer layers, whereas the filter size was larger 
than that used in a prior study (30), resulting in 
increased computational cost. The use of dilated 
convolution is expected to improve efficiency 
while maintaining performance (38). 
   There were several limitations in this study. 
First, the detectability of small lesions was not 
evaluated in this study. In general, the choice of 
a post-smoothing filter is concerned about loss 
of details in tumor structure and the reduced 
detectability of small lesions. Furthermore, 
there are some reports that an NLM filter leads 
to blurring and loss of the details of high-
contrast small lesions especially in images with 
high noise levels (44, 45). Because PET images 
tend to have more noise in regions of high 
uptake (46), an NLM filter may cause reduced 
detectability of small lesions in the higher 
accumulation of the background fibroglandular 
tissue. Therefore, we believe it is important to 
compare the detectability of small lesions in 
images using our model and other post-
smoothing filters. However, the visualization of 
the six focus lesions were maintained in our 
study. Furthermore, there were no non-mass 
uptake lesions in the test data, and future 
studies are needed to assess the influence of our  
denoising model on non-mass uptake lesions. 
Second, our sample size was relatively small. 
Only twenty-eight patients were included in this 
study population and there were only twenty-
two lesions. Data augmentation is one way to 
increase training data, but excessive data 
augmentation can lead to unpredictable results. 
Moreover, the noise distributions in the dbPET 
images vary with respect to the location in the 
plane. A post-smoothing filter denoise the 
image uniformly, but our model could have 
been efficiently reducing the location-
dependent noise, especially on the chest wall 

side. However, the amount or distribution of the 
noise on the chest wall side varies among 
patients, so it takes a large number of sample 
size to investigate the detectability of lesions on 
the chest wall side. Thus, a larger sample size is 
required to create models and evaluate the 
detection performance. In addition, further 
consideration should be given to how the 
network is trained, particularly with respect to 
input images for the network. 2D images were 
used as the input of the network in this study, 
but previous reports have shown good 
performance of PET image denoising using 3D 
or 2.5D images as the inputs of the network (27, 
28). The use of 3D or 2.5D images as the inputs 
may be possible to improve image quality and 
should be investigated in the future. 
Furthermore, we did not eliminate slices that 
include only air in this study, and it may be 
possible to improve the result by using only the 
slices include the breast. 
   The present study reduced the noise from 
dbPET images obtained in about half the 
emission time, and further reduction of 
emission time could be possible by training or 
evaluating models with fewer counts images. 
 

Conclusion 
   The present study showed that the use of the 
Res-Net model reduced the noise in dbPET 
images acquired in about half the emission time 
while preserving quantitative values of lesions. 
The machine learning is feasible in the noise 
reduction in dbPET images and potentially 
performs better than conventional post-image 
filtering. 
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