
 

* Corresponding author: Tomohiro Ueda. Graduate School of Health Sciences, Kumamoto University, Japan; Postal address: 

862-0976.Telfax+81-96-373-5482; E-mail:ueda.tomohiro.dn@mail.hosp.go.jp 

© 2024 mums.ac.ir All rights reserved.  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original work is properly cited. 

 
Feasibility of direct brain 18F-fluorodeoxyglucose-positron 
emission tomography attenuation and high-resolution 
correction methods using deep learning 
 
Tomohiro Ueda1*, Kosuke Yamashita1, Retsu Kawazoe1, Yuta Sayawaki1, 
Yoshiki Morisawa1, Ryosuke Kamezaki2, Ryuji Ikeda2, Shinya Shiraishi3, 
Yoshikazu Uchiyama4, Shigeki Ito5 
 
Graduate School of Health Sciences, Kumamoto University, Japan1 
Department of Central Radiology Kumamoto University Hospital, Japan2 

Japan Faculty of Life Sciences,Kumamoto University,Department of Diagnostic Radiology, 3 
4Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki, Japan 
5Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Japan 

 
A R T I C L E I N F O 

Article type:  
Original Article  
 
Article history:  

Received: 13 Sep 2023 

Revised:    24 Nov 2023 

Accepted:  11 Jan 2024 

 

Keywords:  
Brain PET  

Attenuation correction  

High-resolution correction 

DCNN

A B S T R A C T 

Objective(s): To develop the following three attenuation correction (AC) methods 
for brain 18F-fluorodeoxyglucose-positron emission tomography (PET), using deep 
learning, and to ascertain their precision levels: (i) indirect method; (ii) direct 
method; and (iii) direct and high-resolution correction (direct+HRC) method. 
Methods: We included 53 patients who underwent cranial magnetic resonance 
imaging (MRI) and computed tomography (CT) and 27 patients who underwent 
cranial MRI, CT, and PET. After fusion of the magnetic resonance, CT, and PET 
images, resampling was performed to standardize the field of view and matrix size 
and prepare the data set. In the indirect method, synthetic CT (SCT) images were 
generated, whereas in the direct and direct+HRC methods, a U-net structure was 
used to generate AC images. In the indirect method, attenuation correction was 
performed using SCT images generated from MRI findings using U-net instead of 
CT images. In the direct and direct+HRC methods, AC images were generated 
directly from non-AC images using U-net, followed by image evaluation. The 
precision levels of AC images generated using the indirect and direct methods were 
compared based on the normalized mean squared error (NMSE) and structural 
similarity (SSIM) . 
Results: Visual inspection revealed no difference between the AC images prepared 
using CT-based attenuation correction and those prepared using the three 
methods. The NMSE increased in the order indirect, direct, and direct+HRC 
methods, with values of 0.281×10-3, 4.62×10-3, and 12.7×10-3, respectively. 
Moreover, the SSIM of the direct+HRC method was 0.975. 
Conclusion: The direct+HRC method enables accurate attenuation without CT 
exposure and high-resolution correction without dedicated correction programs.
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Introduction 
   The techniques for quantitative evaluation of 
glucose metabolism include use of the 
standardized uptake value and compartment-
model analysis (1). In the former, glucose 
accumulation in the tissues is quantified in 
relation to the dose administered, and the radio- 

 
 
activity dose is calibrated for the image count, 
giving a ratio that can be corrected based on the 
body weight. The latter is a glucose metabolism 
quantification method in which a two-tissue 
compartment model, including three types of 
rate constants, is applied to 18F-fluorodeoxy-
glucose (18F-FDG), a non- diffusible tracer (2,3). 
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   Factors related to the quantifiable parameters 
of positron emission tomography (PET) include 
the random coincidence coefficient, scattering 
coincidence coefficient, γ-ray attenuation, 
spatial resolution, correspondence between 
PET and computed tomography (CT) images, 
and correction of radioactivity based on PET 
values (4). Among these, the factor with the 
greatest effect on quantitative evaluations is γ-
ray attenuation. Thus, attenuation correction is 
essential for quantitative evaluation (5). 
   CT-based attenuation correction (CTAC) is 
widely used for PET attenuation correction 
using a PET/CT device (6, 7). In CTAC, the 
attenuation map obtained by CT is converted to 
an attenuation map obtained with 511-keV γ-
rays. The image is projected, and the 
attenuation correction coefficient is obtained. 
Including the attenuation coefficient for the 
detection probability in the calculation formula 
for the successive approximation method, 
reconstruction and simultaneous correction can 
be achieved (6, 7). This method can generate 
low-noise attenuation correction data in a short 
time and simultaneously generate 
morphological images. However, the CTAC 
method has disadvantages, such as incorrect 
fusion due to respiratory movement and 
additional radiation exposure due to CT. 
   Magnetic resonance imaging (MRI) is 
routinely used for diagnostic imaging because, 
in comparison with CT, it generates more 
information and reduces patient exposure, with 
fewer artifacts and better contrast. Therefore, 
generation of synthetic CT (SCT) images 
directly from MRI can enable attenuation 
correction by the CTAC method without the 
need for CT devices or radiation exposure. 
   However, certain challenges are associated 
with predicting CT images from MRI findings. 
The MRI signal intensity does not directly 
represent electron density, and bone signals 
cannot be obtained through MRI sequencing at 
present (7). Deep learning, which generates CT 
images from MRI images, may help overcome 
these challenges. Deep convolutional neural 
networks (DCNNs) are based on the most firmly 
established algorithms and have also been 
reported in the field of medical imaging (8, 9). 
   Indirect methods has been proposed, in which 
deep learning can be used to perform CTAC with 
SCT images predicted from MRI images instead 
of CT images (10). And direct methods without 
SCT generation from MRI images also proposed 

(11-13). 
   Hashimoto et al. have reported a highly 
accurate attenuation correction in brain 18FDG-
PET images using DCNN-generated CT images 
(14). The methods for directly generating CTAC-

PET images from non CTAC-PET images using 
DCNN was reported, and the generated CTAC-
PET images had high similarity to the original 
ones (11, 12). Therefore, although accurate 
attenuation correction is possible using DCNN, 
there is a limit to conventional PET resolution in 
depicting minute structures of the brain. The 
high resolution of the brain 18FDG-PET image 
helps understand the brain structure in more 
detail (11, 12). Prior learning through images 
with high resolution correction (HRC) using 
DCNN performed in addition to attenuation 
correction can enable simultaneous attenuation 
correction and HRC, resulting in higher-quality 
brain 18FDG-PET images. Additionally, it is 
expected to be highly useful in clinical practice 
due to its ability to provide accurate correction 
without exposing patients to CT radiation. This 
method also provides detailed information 
about the brain through resolution correction.   
   Therefore, the DCNN based AC with HRC 
method appears to be a reliable approach, 
delivering image quality comparable to 
traditional methods, while also offering 
additional advantages, particularly in terms of 
resolution correction for detailed brain 
structure information. 
   We aimed to develop the following three 
methods for brain 18F-FDG-PET, using deep 
learning, and to ascertain their precision levels: 
(i) indirect method; (ii) direct method; and (iii) 
direct+HRC method, with direct AC and HRC 
performed simultaneously by DCNN. 
 

Methods 
Ethics statements 
   This study was approved by the Ethics 
Committee of Medicine at the Kumamoto 
University for Human Studies (Protocol 
Number. Advanced 1852, 10/04/2022), and 
written informed consent was obtained from all 
patients before the study began. All image data 
were handled anonymously, and the study was 
conducted in accordance with the Declaration of 
Helsinki and the regulations of each 
institution’s ethics board. This study was 
conducted following strengthening the 
Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines. 
 
Participants 
   For the indirect and direct methods, the 
images of the 53 patients were used for the 
study. Twenty of these patients (12 men: mean 
age, 77.0 years; range, 63–84 years; and 8 
women: mean age, 77.3 years; range, 59–89 
years) who underwent both head MRI and CT 
examinations from February 2020 to August 
2021 at Kumamoto University Hospital and 33 
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cases obtained from the Cancer Imaging Archive 
(15) (19 men: mean age, 57.7 years; range, 30–
70 years; and 14 women: mean age, 65.6 years; 
range, 48–78 years) were included. To enhance 
the accuracy of SCT generation, additional 
image sets were added from the database (15).  
   For the participants included from the Cancer 
Imaging Archive, the images were obtained at 
different institutions and, therefore, the matrix 
size, pixel size, and device used differed 
between them. The CT tube voltage was 120 or 
140 kV, T1-weighted images were used for MRI, 
and contrast-enhanced imaging was not used 
for either MRI or CT. The quality of the 
generated SCT remains consistent regardless of 
the input MRI sequence (16). Therefore, the T1 
weighted images (T1WI) were selected for the 
MR images in this study. 
   For the direct+HRC method, the images of 14 
patients who underwent all three imaging 
modalities, including head MRI and brain 
PET/CT with added HRC, from February 2020 
to August 2021 at Kumamoto University 
Hospital, were used as the training and 
validation data sets. These 14 patients included 
eight men (mean age, 40.4 years; range, 15–82 
years) and six women (mean age, 43.8 years; 
range, 21–73 years). No artifact was found on 
any of the images. 
   The data set for each final test of the three 
methods, indirect, direct, and direct+HRC, 
consisted of 13 patients (6 men: mean age, 58.7 
years; range, 31-82 years; and 7 women: mean 
age, 54.6 years; range, 33-75 years) who 
underwent all three imaging modalities, 
including head MRI and PET/CT. 
 
Image acquisition 
   18F-FDG brain PET/CT imaging was performed 
using the Vereos PET/CT system (Philips 
Medical Systems, Amsterdam, Netherlands), 
and the MRI was performed using the 
MAGNETOM Prisma 3.0T system (Siemens 
Healthcare, Erlangen, Germany), under the 
same conditions. 18F-FDG PET acquisition 
conditions were as follows: matrix size, 
128×128; pixel size, 2 mm; acquisition time, 10 
min; acquisition mode, three-dimensional list 
mode; reconstruction method, three-
dimensional ordered subsets expectation 
maximization (3D blob-based OSEM); iteration, 
3; and subset number, 15 (17). The HRC images 
were obtained by using the image 

deconvolution by the Richardson Lucy 
algorithm (18-20). Before PET imaging, CT was 
performed at 120 kV, 49 mAs, scan time 3.5 sec, 
FOV600, matrix size, 512×512 (voxel size 
1.17×1.17×2.00 mm3) for CT attenuation 
correction (CTAC) of PET images using the 
PET/CT system. The MRI sequence consisted of 
magnetization and rapid acquisition with 
gradient echo using magnetization-prepared 
rapid acquisition with the gradient echo 
(MPRAGE; three-dimensionalT1WI) method at 
FOV 240mm ×240mm, matrix：480×480, voxel 
size 0.5×0.5×1.00 mm3 (21,22). 
 
Image conversion and fusion 
   For each participant, pairs of cranial MRI, CT, 
and PET images were superimposed correctly 
using Mirada DBx Build 1.1.1.3 (64 bit; Mirada 
Medical, Ltd., Oxford, UK) (Figure 1). The PET 
and CT images were resized to match the 
dimensions of the MRI images and these were 
then integrated with one another. These images 
were reconstructed such that the anatomical 
landmarks coincided with each other. 
   For CT images, the window width and window 
level were arbitrarily set at 2,500 and 250, 
respectively, for best depiction of the bones. 
Then, areas other than the head (e.g. the bed) 
were cropped from the images. 
   With MRI, heterogeneity of the magnetic field 
owing to differences in the device and patient 
physique can lead to heterogeneity of signal 
intensity; therefore, the maximum signal 
intensity is standardized as 255. Additionally, 
the region other than the head was cropped out 
of the figures. PET images showed differences 
between the participants in the image pixel 
counts and, thus, it was necessary to make the 
count scale consistent for each participant and 
to align the counts with the formula used in 
Equation 1 (shown below). With each pixel, the 
minimum count for the relevant participant was 
subtracted, and the result was divided by the 
difference between the maximum and 
minimum counts to obtain the normalized 
value: 
Xnorm= ((X-Xmin)/(Xmax-Xmin))×255 (1) 
Xnorm: normalized pixel value;  
Xmin: minimum value for the participant; 
Xmax: maximum value for the participant 
   The image data for each patient was 
individually normalized using this equation. 
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Figure 1. Image conversion and fusion. MRI, CT, and PET images were converted such that the matrix size and pixel 
size of the images were fused with each other. These images were reconstructed such that the anatomical positions 
coincided with each other. 

 
Image format transformation  
   The image format required for DCNN 
processing is the Portable Network Graphics 
(PNG) format. Therefore, after image 
conversion and fusion, the PET, CT, and MRI 
images in the Digital Imaging and 
Communications in Medicine (DICOM) format 
were converted to the PNG format using our 
original program developed in the Python 
programming language. 
   All MRI, CT, and PET images were processed 
as detailed above and, then, prepared as 
256×256 matrices. Additionally, by performing 
four-way rotation, four-way translation, and 
flipping, the number of images was expanded 
32-fold, and the learning data set was prepared. 
For the final image, the PNG image obtained 
using DCNN was reformatted into a DICOM 
image using the original image pixel counts. 
 
Synthetic CT (SCT) image generation using a 
DCNN 
   Using a DCNN, AC images were generated by 
the indirect, direct, and direct+HRC methods.  

 
   Figure 2 shows the U-net structure of the 
DCNN used to generate the SCT images (23-25). 
In a U-net of 13 convolutional layers in five 
depth grades, the activation coefficient 
(rectified linear unit) and batch normalization 
were applied to all convolutional layers other 
than the last one. Immediately after the last 
convolutional layer, the squared error was 
applied as the output layer. Using a method for 
a stochastic optimization program (Adam, 
version 9) (24), taking the optimization 
coefficients for U-net learning to be 0.001, 0.9, 
0.999, and 10-8 for α, β-1, β-2, and ε, 
respectively. For the use environment, the 
operating system was Windows 10 Pro 
(Microsoft Corporation, Redmond, WA, USA), 
the central processing unit was Intel(R) 
Xeon(R) Gold 5218R CPU (Intel Corporation, 
Santa Clara, CA, USA), and the graphics 
processing unit was NVIDEA Quadro RTX6000 
(NVIDIA Corporation, Santa Clara, CA, USA). For 
the development environment, the Neural 
Network Console (Sony Corporation, Tokyo, 
Japan) was used. 
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                                                                                 Figure 2. Structure of the U-net 

 
 
Indirect method 
   Taking pairs of MRI and CT images with which 
expansion processing had been performed as 
input images, learning and validation were 
performed using the DCNN (Figure 3b). Using 
only the original image, with which no 
expansion processing had been performed, the 
SCT image corresponding to the real MRI image 
was generated. The number of learning 
repetitions in U-net was 50, and the learning 
curve was converged at this time. U-net learning 
and validation involved random allocation of all 
samples to six groups and evaluation of all 
participants through six-fold cross-validation . 
SCT and non-AC images were input into AC_CT 
attenuation correction software (PDRadiophama 
Inc.) and, thus, AC images were generated. The 
software-created μ-map of the SCT image was 
defined by the HU values of the CT: air (below 
200 HU), bone (above 250 HU), and soft tissue 
(between 200 and 250 HU). 
Direct method 
   With pairs of expansion-processed non-AC 
and original CTAC PET images as input images, 
learning and validation were performed with 
the DCNN. Using only the original non-AC image, 

with which no expansion processing had been 
performed, the CTAC image corresponding to 
the real non-AC image was generated (Figure 
3c). The number of times learning in U-net was 
repeated was 30, and the learning curve was 
converged at this time. For U-net learning and 
validation, all samples were randomly allocated 
to seven groups, and evaluation of all 
participants was performed by seven-fold 
cross-validation. 
 
Direct+HRC method 
   With pairs of expansion-processed non-AC 
and original CTAC+HRC images as input images, 
learning and validation were performed with 
the DCNN (Figure 3d). Using only the original 
image, with which no expansion processing had 
been performed, an AC image corresponding to 
the direct HRC image was generated. The 
learning in U-net was repeated 30 times, and the 
learning curve was converged at this time. For 
U-net learning and validation, all samples were 
randomly allocated to 10 groups, and evaluation 
of all participants was performed through 10-
fold cross-validation. 
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Figure 3. Flow diagram of the indirect, direct and direct+HRC method 

 
Evaluation 
   AC images obtained by the indirect, direct and 
direct+HRC methods were compared with 
original CTAC PET images and original 
CTAC+HRC PET images by using the evaluated 
using normalized mean square error (NMSE）

peak-signal-to-noise ratio (PSNR) and structural 
similarity (SSIM), respectively.  
   With the output images, using the image-
processing software (Daemon Research Image 
Processor (DRIP) version 3.0.2.0; PDRadiophama 
Inc, Tokyo, Japan), the normalized mean square 
errors (NMSEs) were calculated. The NMSE 
calculation formula was as shown in Equation 2: 
 

𝑁𝑀𝑆𝐸 =
∑ ∑ [𝑋(𝑖，𝑗)−𝑌(𝑖，𝑗)]2𝑦

𝑗=1
𝑥
𝑖=1

∑ ∑  𝑌(𝑖，𝑗)²
𝑦
𝑗=1

𝑥
𝑖=1

     (2)  

 
i: matrix size (x direction),  
j: matrix size (y direction),  
X: reference image,  
Y: target image (normalized to the maximum 
value of the reference image). 
   The NMSEs were expressed as mean square 
errors of the evaluated images and reference 
images, and the difference between the two 
types of images was presented. The closer the 
NMSE approximated to 0, the closer the image 
was to the reference image. Moreover, the 
structural similarity (SSIM) of the output 

images was calculated using a program 
prepared with Python; the calculating formulas 
are presented in Equation 3, 4(26). 
 

𝑃𝑆𝑁𝑅 = 10 log10(
max (𝐾)

‖𝐾−𝐾′‖2
2  

 )   (3) 

 
Where K and K’ represent the ground truth (the 
original image) and the indirect, direct, and 
direct+HRC images, respectively. 
 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥2+𝜇𝑦2+𝑐1)(𝜎𝑥2+𝜎𝑦2+𝑐2)  
  (4) 

    
μx: the pixel sample mean of x,  
μy: the pixel sample mean of y,  
σx2: the variance of x,  
σy2: the variance of y,  
σxy: the covariance of x and y,  
c1= (k1L)2,  
c2= (k2L)2;  
k1=0.01  
k2=0.03 constants,  
L is the dynamic range of pixel values. 
   In an evaluation method involving SSIM, the 
correlations of the surrounding pixel enabled 
changes in brightness, contrast, and structure 
should be considered. The closer the SSIM was 
to 1, the smaller was the error in relation to the 
reference image. 
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   The values of the indirect and direct methods 
were compared with the value of the original 
CTAC method, respectively. The values of the 
direct+HRC method were compared with the 
original CTAC+HRC method. 
 
Statistical analyses 
   Statistical analyses were performed using EZR 
(Saitama Medical Center, Jichi Medical 
University, Saitama, Japan) version 1.54 (27), 
and the graphical user interface of R (The R 
Foundation for Statistical Computing, Vienna, 
Austria) version 3.6.2. The NMSE, PSNR and 
SSIM values of the three methods were 
compared using the Wilcoxon rank sum test. 
Statistical significance was defined as P<0.05. 

 
Results 
   Figure 4a shows box-and-whisker plots 
generated using the Wilcoxon rank sum test for 
NMSE values obtained through the DCNN and 
original methods. The NMSE values for the 
indirect method were distributed from 
0.0435×10-3 to 1.34×10-3 (median 0.281×10-3).  
   For the direct method, the values were 
distributed from 0.833×10-3 to 12.5×10-3 
(median 4.62×10-3), while for the direct+HRC 
method, they were distributed from 5.02×10-3 
to 23.4×10-3 (median 12.7×10-3). The 
significance levels for each method were all 
p<0.05, indicating statistical significance. 
Additionally, there was a noticeable difference 
in the median values among the three groups. 
The NMSE median increased in the following 
order: indirect > direct > direct+HRC, and the 
range from the lowest to the highest values also 
expanded in the same manner. 

   Figure 4b shows box-and-whisker plots of 
PSNR values obtained by the DCNN and original 
methods. The PSNR values for the indirect 
method was 47.0±2.88 (median 48.2). For the 
direct method, the value was 37.0±4.71 (median 
36.0), and for the direct+HRC method, it was 
35.0±3.80 (median 34.0). The significance 
levels between the indirect and direct methods 
were all p<0.05, and between the indirect and 
direct+HRC methods, p<0.05 as well. There was 
a noticeable difference in the median values 
among these groups. However, the significance 
level between the direct and direct+HRC 
methods was p>0.05, indicating no statistically 
significant difference in the rank means of the 
groups. The PSNR decreased in the following 
order: indirect > direct > direct+HRC, and the 
range of values also shrink accordingly. 
   Figure 4c presents box-and-whisker plots of 
SSIM values obtained by the DCNN and original 
methods. The SSIM value for the indirect 
method was 0.998±0.00016 (median 0.998).  
   For the direct method, the value was 
0.961±0.0058 (median 0.965), and for the 
direct+HRC method, it was 0.975±0.0021 
(median 0.975). The significance levels were all 
p<0.05 when comparing the indirect and direct 
methods, as well as between the indirect and 
direct+HRC methods. There was a noticeable 
difference in the median values among these 
groups. However, the significance level between 
the direct and direct+HRC methods was p>0.05, 
indicating no statistically significant difference 
in the rank means of the groups. The SSIM 
median decreased in the following order: 
indirect > direct+HRC > direct, and the range of 
values also expanded accordingly. 
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Figure 4a. NMSE values 

 

 
Figure 4b. PSNR values 

 

 
Figure 4c. SSIM values 

 
 
 
 

Figure 4. Box-and-whisker plots generated using the 
Wilcoxon rank sum test 

   Figure 5a-c show clinical images of the 
indirect, direct and direct+HRC methods, 
respectively. Figure 5a shows slices of the 
periauricular region, basal ganglia, and parietal 
region are presented. On the left, there are CT, 
SCT, CT-µ-map, and SCT-µ-map images, along 
with AC images that have undergone 
attenuation correction using both the CTAC and 
indirect methods. The NMSE and SSIM values 
for the AC images obtained with the CTAC and 
indirect methods were 0.407×10-3 and 0.997, 
respectively. The images were generated with 
recognition of even minor differences in CT 
values, and no differences between the CT 
images were found. In the μ-map images, some 
differences in bone structure were shown in the 
slices of the parietal region. Since the AC images 
of the parietal region were generated by using 
the mean μ values of the same area, the differences 
of the μ-map images did not affect AC imaging. 
   Figure 5b shows the AC image generated by 
the direct method for one subject. The NMSE 
and SSIM of this participant’s AC images 
obtained using the CTAC and direct methods 
were 5.60×10-3 and 0.98, respectively. Above, 
slices of the periauricular region, basal ganglia, 
and parietal region are presented; on the left, 
non-AC and AC images with attenuation  

correction by CTAC and direct methods are 
presented. The inaccuracy of the pixels 
predicted using the DCNN were not directly 
reflected in the PET images. 
   Figure 5c shows the AC image generated using 
the direct+HRC method for one subject. The 
NMSE and SSIM of this participant’s AC images 
obtained using the CTAC and direct methods 
were 7.80×10-3 and 0.98, respectively. Slight 
differences in coloration intensity were shown 
in the corpus striatum and brain parenchyma. It 
was possible to generate AC images presenting 
patients’ individual anatomical characteristics 
even in slices from the periauricular region, 
basal ganglia, and parietal region. Based on the 
high resolution of the AC images obtained using 
CTAC, which were the teaching images, and the 
clarity at the border region of the tissue, it was 
possible to clearly define the information in 
each of the pixels. 
   Visual evaluation revealed no difference 
between AC images. All generation of AC images 
were very good, and no major changes of image 
counts or lack of clarity were detected. 
   Visual evaluation revealed no difference 
between AC images obtained by the CTAC 
method and images obtained by the indirect, 
direct, and direct+HRC methods. 
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Figure 5a. Slices of the periauricular region, basal ganglia, and 
parietal region generated using the indirect method 

 
 
Figure 5b. AC images generated using the direct 
method 

 
Figure 5c. AC images generated using the direct+HRC method 

 
 
 
 
 
                    Figure 5. Clinical images 

 

Discussion 
   In this study, the following attenuation 
correction methods were developed: (i) the 
indirect method, in which attenuation 
correction of cranial PET is performed using CT 
images predicted from cranial MRI images by a 
DCNN; (ii) the direct method, in which AC 
images are generated directly from non-AC 
images; and (iii) the direct+HRC method, in 
which resolution correction is performed up to a 
high level simultaneously with the direct method. 
   The NMSE and SSIM obtained by each of these 
methods were compared (Figure 4a and 4c). 
The NMSE value increased in the order of 
indirect, direct, and direct+HRC methods, which 
were 0.281×10-3, 4.62×10-3, and 12.7×10-3, 
respectively (Figure 4a). The difference 
between the indirect and the direct and 
direct+HRC values was approximately 10-fold.   
   Dong. et al. reported that the NMSE using an 
encoder-decoder-based deep learning approach 
in the indirect method was 7.00×10-3.  
   The direct value of 4.62×10-3, obtained for our 
direct method, was close to Dong et al.'s value of 
7.00×10-3 (55data) (12). However, our 

direct+HRC NMSE value of 12.7×10-3 was 50% 
inferior to Dong et al.'s value of 7.00×10-3 using 
a direct method. The PSNR value decreased in 
the order of indirect, direct methods and 
direct+HRC, which were 47.0, 37.0 and 35.0 
(Figure 4b). The SSIM value decreased in the 
order of indirect, direct+HRC, and direct 
methods, which were 0.998, 0.975, and 0.961, 
respectively (Figure 4c). The difference in PSNR 
and SSIM exhibited a similar trend in all three 
methods. These results support the results of 
the evaluation using SSIM (28). Arabi et al. 
reported that the SSIM value using an indirect 
method was 0.93 (40 data learning) (13). Shiri 
et al. reported that the SSIM value using a direct 
method (deep encoder-decoder) was 0.989 
(129 data learning) (11). Arabi et al. reported 
that the SSIM value using the other direct 
method was 0.94 (180 data) (29). Additionally,  
a meta-analysis by Raymond et al. reported a 
SSIM value of 0.95 in four papers on attenuation 
correction using deep learning, and this result is 
no different from the SSIM values of the 
direct+HRC method (28). Therefore, all 
generations of AC images from the indirect, 
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direct, and direct+HRC methods were of 
excellent quality because they exceeded the 
SSIM values of previous reports (10-13). 
   The PSNR and SSIM of the direct+HRC method 
were approximately equivalent to the direct 
method (p=0.414 (Figure 4b, p=0.11 (Figure 
4c)). However, the range of the values in the 
direct+HRC method was narrower than that of 
the direct method. The algorithm used for HRC 
uses high resolution and regularization noise 
suppression techniques (30). The direct+HRC 
images has been trained on the original 
denoised higher resolution images compared to 
the direct images. The DCNN is able to learn 
finer features (complexity) between adjacent 
pixels during training more effectively than in 
the case of the direct images. Consequently, the 
DCNN output can represent finer structures 
compared to the direct images, owing to the 
high-resolution training. As a result, SSIM was 
higher for the direct+HRC compared to the 
direct method because SSIM considered 
brightness, contrast, and structure in images. 
On the other hand, NMSE considered the 
absolute value of errors, so the results are 
reversed due to the impact of noise and other 
factors when representing fine structures. 
   Visual evaluation revealed no difference 
between AC images, and no major changes of 
image counts or lack of clarity were detected.   
   Based on the original HRC+AC images 
obtained using CTAC, which were the teaching 
images, and the clarity at the border region of 
the tissue, it was possible to clearly define the 
information in each of the pixels. This method is 
as reliable as the previously reported 
attenuation correction method. In addition, this 
method has resolution correction, which is 
expected to provide fine structural information 
on the striatum and other areas in the brain. 
   Overall, based on the provided information, it 
appears that the deep learning-based 
attenuation correction method is not only 
reliable, with image quality comparable to 
traditional methods but also offers additional 
benefits, particularly in terms of resolution 
correction for detailed brain structure information. 
   Our study highlights a significant advantage of 
the direct+HRC method. We included resolution 
correction, which is expected to provide fine 
structural information in the striatum and other 
areas of the brain. With the direct+HRC method, 
input of non-AC images enabled image 
generation with resolution- and attenuation-
correction within seconds. These factors are 
expected to reduce human error and personal 
load in clinical practice due to less time 
requirements for radiography and image-
processing. 

   Sun et al. reported high-quality PET images  
generated from ultra-low-dose PET/MRI using 
bi-task deep learning. The NMSE values of the 
method were distributed from 2.42×10-3 to 
3.09×10-3, and the SSIM values of this method 
were over 0.98 (24). 
   Therefore, for clinical use, it is essential to 
ensure that the image quality of our direct+HRC 
method is consistent with these values. In this 
study, we successfully created high-resolution 
images with only 14 training examples. It is 
highly likely that with a substantial increase in 
the amount of training data, there is a significant 
potential for improvement in NMSE and SSIM 
values. Furthermore, it's important to note that 
this study is based on results from a single 
facility and device. Therefore, further validation 
across multiple facilities and devices will be 
necessary in the future. 
   As a new technology using deep learning, 
attention has been paid to generative 
adversarial networks (GANs). A GAN is 
constructed from two networks, the generator 
and discriminator, and their mutual 
competition generates images with high 
resolution (31). Therefore, it is expected that 
precision can be further increased by switching 
the network structures used for image 
generation from U-net to GAN. 
 

Conclusion 
   A DCNN-based method for direct attenuation 
and high-resolution correction has promising 
results and potential for clinical use, aligning 
closely with previous methods. To enhance its 
applicability, it is crucial to increase training 
instances with data from facilities with diverse 
characteristics. Collaboration among institutions 
and wider validation across various scenarios 
are needed to ensure its effectiveness in real-
world medical practice. 
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