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A B S T R A C T 

Objective(s): A simple noninvasive microsphere (SIMS) method using 123I-IMP and 
an improved brain uptake ratio (IBUR) method using 99mTc-ECD for the 
quantitative measurement of regional cerebral blood flow have been recently 
reported. The input functions of these methods were determined using the 
administered dose, which was obtained by analyzing the time activity curve of the 
pulmonary artery (PA) for SIMS and the ascending aorta (AAo) for the IBUR 
methods for dynamic chest images. If the PA and AAo regions of interest (ROIs) can 
be determined using deep convolutional neural networks (DCNN) for 
segmentation, the accuracy of these ROI-setting methods can be improved through 
simple analytical operations to ensure repeatability and reproducibility. The 
purpose of this study was to develop new PA and AAo-ROI setting methods using a 
DCNN (DCNN-ROI method). 
Methods: A U-Net architecture based on convolutional neural networks was used 
to determine the PA and AAo candidate regions. Images of 290 patients who 
underwent 123I-IMP RI-angiography and 108 patients who underwent 99mTc-ECD 
RI-angiography were used. The PA and AAo-ROI results for the DCNN-ROI method 
were compared to those obtained using manual methods. The counts for the input 
function on the PA and AAo-ROI were determined by integrating the area under the 
curve (AUC) counts of the time-activity curve of PA and AAo-ROI, respectively. The 
effectiveness of the DCNN-ROI method was elucidated through a comparison with 
the integrated AUC counts of the DCNN-ROI and the manual ROI. 
Results: The coincidence ratio for the locations of the PA and AAo-ROI obtained 
using the DCNN method and that for the manual method was 100%. Strong 
correlations were observed between the AUC counts using the DCNN and manual 
methods. 
Conclusion: New ROI- setting programs were developed using a deep convolution 
neural network DCNN to determine the input functions for the SIMS and IBUR 
methods. The accuracy of these methods is comparable to that of the manual 
method.
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Introduction 
   As tracers that accumulate in brain tissue after 
passing through the Blood Brain Barrier (BBB), 
lipid-soluble substances such as N-isopropyl-p-
[123I] iodoamphetamine (123I-IMP) and 99mTc-
ethyl cysteinate dimer (99mTc-ECD) are widely 
used for cerebral blood flow single photon 
emission computed tomography (SPECT) (1-7).  
   Therefore, various regional cerebral blood 
flow quantification methods have been 
developed (8-18). 
   A simple noninvasive (without arterial blood 
sampling) microsphere (SIMS) method using 
123I-IMP and an improved brain uptake ratio 
(IBUR) method using 99mTc-ECD as a 
noninvasive quantitative method have recently 
been reported (19-24). The input functions of 
these methods were determined using the 
administered dose. This was based on the area 
under the curve (AUC) obtained by analyzing 
the time activity curve (TAC) for the pulmonary 
artery (PA) for SIMS and the ascending aorta 
(AAo) for the IBUR method using dynamic chest 
images (19-24).  
   An automated region of interest (ROI)-setting 
program for PA and AAo was developed based 
on the outcomes of the mathematical and 
statistical analyses of chest radioisotope (RI) 
angiograms, respectively (22-24). The 
coincidence ratio for the locations of the PA and 
AAo-ROI determined mathematically, and those 
determined manually was approximately 
91−94% (22-24). However, further improvements 
of approximately 10% are required to use this 
program in practice. For the SIMS method, the 
AUC based on the TAC for the PA was the 
pulmonary inflow (19). For the lung field, the 
maximum TAC value was normalized to 1. The 
washout ratio (WR) was calculated, and the 
product of the lung inflow and WR was used as 
the input function. The automated determination 
of WR was accurate, as mean values were used 
for the lungs filled with 123I-IMP (22). Therefore, 
new methods are required to determine PA and 
AAo-ROI. 
   Deep convolutional neural networks (DCNNs) 
are based on established algorithms and have 
been used in the field of medical imaging (25, 
26). Additionally, it has proven to be very 
effective for a variety of applications in the field 
of medical imaging (27-30). In the field of 
nuclear medicine, Chen et al. developed a direct 
method using a DCNN with which attenuation 
correction was completed solely by the input of 
SPECT images of cardiovascular blood flow 
obtained using a semiconductor detector (31).  
   They also developed an indirect method with 
which a CT attenuation map was derived using 
a DCNN (31). Hashimoto et al. and Armanious et 

al. reported highly accurate attenuation 
correction in brain 18FDG-PET images using 
DCNN-generated CT images (32, 33). In this 
light, we could use a DCNN to develop a new 
ROI-setting method that is not affected by 
various conditions and analyst factors. U-net 
has been applied to the segmentation of medical 
images, and it may be highly effective for region 
extraction because it is very useful for feature 
extraction and providing positional information 
(27, 34, 35). In other words, employing U-net is 
expected to facilitate the extraction of images 
from specific areas, not only for 3D images but 
also for 2D dynamic images. In addition, with 
the capability for specific area extraction, it 
should also be possible to pinpoint extraction in 
corresponding regions. 
   If the PA and AAo regions can be determined 
using a DCNN for segmentation, the accuracy of 
these ROI-setting programs can be improved 
through simple analytical operations to ensure 
repeatability and reproducibility. Additionally, 
these methods facilitate automated ROI- setting 
that is not only useful in nuclear medicine but 
also for all imaging examinations. 
   This study aimed to develop a new PA- and 
AAo-ROI-setting program for determining input 
functions for the SIMS and IBUR methods using 
a DCNN and to clarify the accuracy of this 
program by comparing the obtained input 
function with the manual method. 

 
Methods 
Ethics statements 
   This study was approved by the Ethics 
Committee of Medicine at the Kumamoto 
University for Human Studies (Protocol 
Number. Advanced 1451, 09/29/2022), and 
written informed consent was obtained from all 
patients before the study began. All image data 
were anonymized, and the study was conducted 
following the principles of the Declaration of 
Helsinki and the regulations of the ethics board 
of each participating institution. 
   This was a prospective, comparative, 
observational study that developed an 
automated ROI-setting program based on deep 
neural networks for SPECT images. This study 
was conducted following strengthening the 
Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines. 
 
Participants 
   The study included 290 patients (male: 197, 
female: 93, mean age: 59.0 years old) who 
underwent 123I-IMP RI-angiography and 
microsphere imaging at the same time and 108 
patients (male: 74, female: 34, mean age: 70.4) 
who underwent 99mTc-ECD SPECT and RI-
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angiography between February 2012 and 
August 2021 at Kumamoto University Hospital.   
   None of the patients had pulmonary disease. 
Images obtained from the patients were used as 
training and validation datasets for the 123I-IMP 
PA-ROI and 99mTc-ECD AAo-ROI methods. The 
final test dataset for the 123I-IMP PA-ROI 
method comprised the data of 35 patients (23 
men, 11 women; mean age: 58.4 years) who 
underwent 123I-IMP RI-angiography and 
microsphere imaging at Kumamoto University 
Hospital. For the 99mTc-ECD AAo- ROI method, 
the final test dataset included the data of 65 
patients (30 men, 35 women; mean age: 64.0 
years) who underwent 99mTc-ECD RI-
angiography and SPECT at Kumamoto 
University Hospital. 
   123I-IMP chest RI-angiography was performed 
using a SPECT device (Millennium VG, GE, USA). 
Imaging was performed at 1 frame/s for 60 s 
after the 123I-IMP bolus injection. The matrix 
size was 128×128 pixels, and the pixel size was 
2.21 mm/pixel (zoom factor: ×2). The 
collimator was equipped with low energy and 
high resolution (LEHR). The energy window 
was set to 159keV±10%. 
   99mTc-ECD chest RI-angiography was 
performed using a SPECT device (E-cam, SIE-
MENS, Germany) equipped with LEHR 
collimators. Imaging was performed at 1 fps for 
100 s from the start of the 99mTc-ECD bolus 
injection. The matrix size was 128×128 pixels, 
and the pixel size was 2.21 mm/pixel (zoom 
factor: ×2). The energy window was set to 140 
keV±10%. The Daemon Research Image 
Processor manufactured by FUJIFILM RI 

Pharma and Image J (National Institutes of 
Health, https://imagej.net/ij/) was used for 
image processing. 
   Standardization of the RI-angiography images 
The pixel sizes and positions of the chest RI 
angiograms differed with the cases because 
they depended on the gamma camera system 
used and the patient. The pixel size of all chest 
RI angiograms was converted to 2.21 mm, 
which was the smallest size that would prevent 
the splitting of the voxels using linear 
interpolation. 
 
Development of candidate region extraction 
program using DCNN 
   Figure 1 shows the structure of a DCNN (U-
net) (27, 34, 35). We applied the ReLU 
activation function and batch normalization to 
all convolutional layers, except for the last 
convolutional layer in the U-net, with depths of 
five and 13 convolutional layers. Immediately 
after the last convolutional layer, the squared 
error was applied to the output layer. The 
optimization functions for the U-net training 
were Adam, Alpha=0.001, Beta1=0.9, 
Beta2=0.999, and Epsilon=1E-8, and the 
number of iterations was 50. For the learning 
and validation of the U-net, all samples were 
randomly divided into six groups, and all cases 
were evaluated using six-fold cross-validation. 
The operating environment used was Microsoft 
Windows 10 Pro, the CPU was an Intel Xeon E5-
2623 v3, and the GPU was an NVIDIA Quadro 
RTX6000. The program was developed using 
the Sony Neural Network Console. 

 

 
Figure 1. Structure of the U-net 

 
   Figure 2 shows a schematic of the automated 
ROI-setting program based on a DCNN. Chest 
RI-angiography images and manually extracted 
PA and AAo (99mTc-ECD) blood-phase images 
were used to train the U-net. For the ROI setting, 
three researchers extracted the respective 
optimal ROI areas from the chest RI- 
angiography image and trained the U-net to  
 

 
learn the average area, which was then used as 
the final area. Circular ROIs were positioned 
around the centroid of this area to ensure it did 
not extend beyond the region. 
   Owing to the small sample size of this study, 
the training accuracy was improved by 
artificially increasing the amount of data after 
processing the training images. Data expansion  
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was performed by reversing, rotating in four 
directions, and translating 10 pixels in eight 
directions. 
 

 
Figure 2. Schematic diagram of DCNN ROI-setting program 

 
Creation of pulmonary artery (PA) phase and 
candidate images 
   For the 123I-IMP SIMS method, the ROI was set 
to the PA, and the input function was 
determined using count analysis of the ROI (19).   
   Figure 3a shows examples of the manually 
created PA phase images and candidate PA 
region images. The PA phase image was created 
by adding two to three frames before and after 
the peak frame necessary to extract the PA 
region from the chest RI-angiography image. PA 
area candidate images were created by marking 
the PA areas on the PA phase images using 
ImageJ software. A total of 16,384 learning 
images were obtained by extending the data 
from the 256 target cases. 
 
Creation of ascending aorta (AAo) phase and 
candidate images (99mTc-ECD) 
   For the 99mTc-ECD IBUR method, an ROI is set 
on the ascending aorta (AAo), and the input 
function is determined from the count analysis 
of the ROI (20, 21). Figure 3b shows examples 
of the manually generated AAo phase images 
and candidate AAo region images. The AAo 
phase image was created by adding two to three 
frames before and after the peak frame required 
to extract the ascending aortic region using the 
normalized thoracic RI-angiography image. The 
AAo region candidate image was created by 
marking the AAo region using the ImageJ 
software. A total of 6804 training images were 
obtained by extending the data from 108 
examples and subtracting the original images. 

ROI-setting 
PA-ROI 

   First, the PA region phase image and the PA 
region candidate image were manually created 
(Figure 3a) (step 1), and the DCNN was trained 
using the former as the input image and the 
latter as the training image. Next, the 
verification image was input, and the PA area 
candidate image was obtained (Figure 3a) (step 
2). For the PA candidate images, areas with 
counts were identified using the P-tile method, 
where the pixel values were set to one. 
Subsequently, binary image (black and white) 
processing was applied, with 0 or 1 
representing the pixel values. Circular ROIs 
with a radius of three pixels (6.6 mm) were 
placed at the centroids of these regions (Figure 
3a) (step 3). 
 
AAo-ROI  

   AAo region phase images and AAo region 
candidate images were created manually using 
the former as the input image and the latter as 
the training image for the DCNN training 
(Figure 3b) (step 1). Next, the verification image 
was input, and the AAo candidate image was 
obtained (Figure 3b) (step 2). For the AAo 
candidate images, areas with counts were 
identified using the P-tile method, where the 
pixel values were set to one. Subsequently, 
binary image (black and white) processing was 
applied, with 0 or 1 representing the pixel 
values. The final determination of the PA-ROI 
location was based on the center of gravity 
within the candidate region for the pulmonary 
artery (PA). Circular ROIs with a radius of 
three pixels (6.6 mm) were then placed at the 
centroids of the regions (Figure 3b) (step 3). 
   The centroid of the binarized image was 
determined by calculating the weighted average 
position of the white areas corresponding to '1,' 
thus identifying the central position within 
these white regions (Figure 3a and b) (step 3).   
   To minimize the impact on the centroid ratio, 
this study employed a fixed Circular ROI and 
prevented any extension beyond the candidate 
region. 
 
Assessment method 
   The accuracy of the DCNN-ROI was clarified by 
defining the PA and AAo regions on the chest RI-
angiography image (red frames in Figsure 3a 
and b), comparing the centroids of the ROIs set 
by the DCNN-based ROI-setting program with 
those determined manually, and evaluating the  
range of variation between the two methods. 
   Figure 3a (step 4) shows the time-activity 
curve (TAC) of the PA-ROI, a single peak of TAC 
is the target of analysis for PA-ROI (SIMS) (24).   
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   Figure 3b (step 4) shows the TAC of the AAo-
ROI; the second peak of the double-peak TAC is 
a prerequisite for AAo-ROI (IBUR) (Figure 3b) 
(22). The counts for the input function on the PA 
and AAo-ROI were determined by integrating 
the area under the curve (AUC) counts of the 

time-activity curve (TAC) of PA and AAo-ROI, 
respectively. The effectiveness of the DCNN-ROI 
was elucidated through a comparison with the 
integrated AUC counts of the DCNN-ROI and the 
manual ROI. 

 

  
Figure 3. Schematic diagram for the segmentation, ROI setting, area under the curves (AUC), and integrated counts 

(a) PA-ROI        (b) AAo-ROI 
 
Statistical analysis 
   All data are expressed as mean ± standard 
deviation (SD) and were statistically analyzed 
by t-test using MedCalc Statistical Software 
version 20.115 (Med Calc. Software Ltd., 
Ostend, Belgium; https://www.medcalc.org, 
2020). Statistical significance was set at p<0.01. 
The Altman analysis was used to assess the 
agreement between the manual and DCNN-
based ROI-setting methods. 
 
Results 
Comparison of ROI positions 
PA-ROI  
   The manual PA-ROI determined by histogram 
analysis of the PA images was used as the 
reference. Figure 4a shows the distribution of 
the differences between the x- and y-axis 
directions of the DCNN PA-ROI. When the match 
condition was ±2 pixels for the x-axis and ±3.5  

pixels (8.5 mm) for the y-axis, which is the range  
matching the size of the PA, all 35 cases 
matched. The coincidence ratio for the 
automated and manual methods was 100% 

(34/34). 
 
AAo-ROI  

   Figure 4b shows the distribution of the 
difference between the x- and y-axis directions 
of the DCNN-based AAo-ROI based on the 
manual ROI point of the AAo image. The mean 
difference between the manual and DCNN-
based AAo-ROI was ±0.73 pixels (1.61 mm) for 
the x-axis and ±0.47 pixels (1.03 mm) for the y-
axis. When the match condition was set to ±4 
pixels (8.8 mm) for the x-axis and ±4 pixels (8.8 
mm) for the y-axis, which is the range matching 
the size of the PA, all 65 cases were matched. 
The coincidence ratio for the automated and 
manual methods was 100% (65/65). 
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Figure 4. Comparison of ROI location (a) PA (b) AAo 

 
Clinical case image 
  Manual ROIs in Figure 5 represent candidate 
regions for ROI configuration (corresponding to 
step 2 in Figure 3a and 3b). The DCNN-ROIs 

 
are shown for PA and AAo -ROI configurations, 
respectively. In all cases, the DCNN-ROIs were 
set within the boundaries of the manual ROIs. 

 

 
Figure 5. Comparison of ROI images. (a) Image extraction and PA 
ROI-setting for the SIMS method (123I-IMP PA) (b) Image extraction 
and AAo ROI-setting with the IBUR method (99mTc-ECD AAo) 

 
Comparative evaluation with manual method 
   Figure 6a shows the relationship between the 
DCNN AUC PA(x) and manual AUC PA (y). The 
relationship between the two is expressed as 
y=1.05x - 16.8, and the correlation coefficient is 
r=0.98 (p<0.01), showing a very good 

correlation. In the Bland-Altman analysis, the 
mean difference between the AUCs for the 
DCNN and manual methods was -1.22%, as 
shown in Figure 6b. The proportional 
regression equation was y=-0.0082x +2.4, and 
very small negative fixed errors were observed, 

a 

b 



 Tomimatsu T et al  DCNN-ROI setting method 

126  Asia Ocean J Nucl Med Biol. 2024; 12(2):120-130 

as shown in Figure 6b.    
   The relationship between the DCNN AAo AUC 
(x) and manual AUC (y) was expressed as 
y=1.02x - 10.4, and the correlation coefficient 
was r=0.97 (p<0.01), indicating a very good 
correlation as shown in Figure 6c. The mean  
 

difference between the AUCs for the DCNN and 
manual methods was 4.84%. The proportional 
regression equation was y=0.0023x -6.1, and 
very small positive fixed errors were observed, 
as shown in Figure 6d. 
 

 

 

Figure 6. Relationships between the AUC values for the DCNN and manual 
ROI methods 
(a) Relationship between the AUC values for the DCNN and manual ROI 
methods for PA 
(b) Bland-Altman plot between the DCNN and manual AUC values for the 
PA-ROI 
(c) Relationship between the AUC values for the DCNN and manual ROI 
methods for AAo 
(d) Bland-Altman plot between the DCNN and manual AUC values for the 
AAo-ROI 

Discussion 
   We developed an automated ROI-setting 
program that determines a new input function 
using a DCNN and the SIMS and IBUR methods 
(19, 20) based on brain perfusion SPECT image 
analysis developed for the field of nuclear 
medicine. 
   For the SIMS method using 123I-IMP, it is 
necessary to set two ROIs in the PA and lung to 
determine the input function (19, 23, 24). The 
automated WR determination program is 
accurate without any modification, as the WR is 
obtained using the mean uptake counts for the 
lungs filled with 123I-IMP (22). Therefore, new 
methods for PA and AAo-ROI determination are 
required. For the IBUR method using 99mTc-ECD, 
it is necessary to set an ROI in the AAo when 
determining the input function (20-22).   
   Therefore, we developed an automated ROI-
setting program for PA and AAo. For this  

program, phase images of the PA and AAo were 
obtained from chest RI-angiography by frame 
addition, with the peak frame necessary for 
extracting each region as the center. After 
learning the segmentation to generate the 
candidate from the phase region image to the 
DCNN, binarization was performed on the 
candidate region images generated by inputting 
the verification images into the DCNN, and the 
ROI was set at the center of gravity of each 
region. We verified the accuracy of the DCNN 
method by comparing its ROI with that set by 
the manual method and the accompanying 
AUCs.  
   Table 1 shows a comparison of the mean 
difference with respect to the manual method 
between the DCNN and Auto methods. The 
DCNN PA-ROI was set within the specified PA 
range of the PA for all 34 visually evaluated 
cases. From the evaluation of the difference  
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from the center of the PA ROI manually set by 
three research staff, the ROI was set within the 
allowable range for all cases, even when the 
allowable range was deviated by ±1 (2.2 mm) 
pixels on the a-axis and ±3.5 (7.7 mm) pixels on 
the y-axis from the size of the PA (Figure 4a).     

   This range was consistent with that reported 
by Yamashita et al. (24). Furthermore, the 
coincidence ratio was 100% for the DCNN-ROI, 
compared with the 94% reported by Yamashita 
et al. Therefore, the DCNN-ROI method is 
comparable to the automated ROI method. 

 
Table 1. Comparison of the mean difference with respect to the manual method between the DCNN and auto method 

  P A R OI for the123I-IMP SIMS  AA0 R OI for 99mTC-E C D IBU R  
ROI setting method  DCNN Auto a DCNN Auto b 

Mean difference to the 
manual method (m m) 

X Direction ±2.2 ±2.2 ±1.0 ±8.6 
Y Direction ±7.7 ±7.7 ±1.6 ±6.4 

Coincidence ratio (%)  100 94 100 98 
a: Yamashita, K et al. Phys Med 2016, 32, 1180-1185. 
b: Masunaga, S et al. Phys Med 2014,30,513-520. 

 
   As shown in Figure 5a, the DCNN PA and 
manual AUCs showed a very good correlation 
(r=0.97). In addition, the average error was -
1.22%, indicating good agreement. Yamashita et 
al. reported that the ROI position and AUC for 
the automated ROI-setting method using phase 
analysis showed good correlations (r=0.91) 
with those for the manual method (24). 
Therefore, the DCNN-ROI method may be 
comparable or superior to the automated ROI 
method proposed by Yamashita et al (24). 
   For the automated ROI-setting in this study, 
the ROI was set within a specified range for all 
65 visually evaluated cases. The evaluation of 
the difference from the center of the PA-ROI 
manually set by three research staff showed 
that the ROI was set within the allowable range 
for all cases, even when the allowable range 
deviated by ±0.73 (1.6 mm) pixels on the x-axis 
and ±0.47 (1.03 mm) pixels on the y-axis from 
the size of the pulmonary artery (Figure 4b).   
   Masunaga et al. reported a difference between 
the ROI locations obtained by the automated 
and manual methods for the AAo-ROI. They also 
reported that the mean difference between the 
ROI locations was 2.9 pixels (6.4 mm) on the x-
axis and 3.9 pixels (8.6 mm) on the y-axis (22).   
   Furthermore, the coincidence ratio was 100% 
for the DCNN-ROI method relative to the 98% 
reported by Masunaga et al. (22). The DCNN-
ROI method matched the manual method within 
a narrower range of approximately 25% of that 
reported by Masunaga (22). This indicates that 
the variability in the AUC due to TAC analysis 
may be reduced. Therefore, the DCNN-ROI 
method was superior to the automated ROI 
method proposed by Masunaga et al. (22). 
   As shown in Fig 5b, the DCNN AAo AUC counts 
calculated by this program and the manual AUC 
counts demonstrated a very good correlation 
(r=0.97). Masunaga et al. reported that the ROI 
position and AUC using phase analysis in the 
automatic ROI setting method had a good 
correlation (r=0.99) with those in the manual 

method (22). Therefore, the DCNN-ROI method 
may be comparable to the automatic ROI 
method by Masunaga et al. (22). 
   In the Bland-Altman analysis, minimal fixed 
errors were observed between the AAo and PA 
AUCs for the DCNN and manual methods, as 
shown in Figure 6b and d. However, given the 
negligible magnitude of these errors, it is 
believed that they do not introduce any 
significant systematic bias. 
   In this study, the DCNN-ROI method was 
compared with the manual method and the 
DCNN method from the accuracy viewpoint of 
the ROI-setting position and AUC counts; the 
usefulness of the DCNN-ROI method was 
proven in all cases. When generating a regional 
phase image using the conventional automatic 
method based on phase analysis, there is a high 
possibility that extraction would be difficult due 
to the subtraction process in the phase analysis 
(22). In our method, the phase analysis is only 
performed during frame addition to create 
regional phase images, eliminating the effect of 
bolus injection properties and allowing ROI-
setting even for cases that were difficult to 
process with the conventional automatic 
method. In addition, in terms of the time 
required for ROI-setting in this program, it takes 
1 to 2 days for U-net to learn images for the first 
time, but thereafter, the region candidate image 
can be generated using the trained U-net and 
the automatic ROI-setting can be done within an 
even shorter period of time than in the 
automatic method. 
   Based on the above, since this program also 
ensures reproducibility, compared to 
noninvasive brain perfusion quantification 
methods, the DCNN-ROI method ensures high 
reproducibility and simplification of analysis 
operations, thereby eliminating analytical 
differences between institutions. We believe 
this method is clinically useful, considering that 
this program can accommodate patients with 
heart disease and problems depending on the 
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drug administration side, which the 
conventional automatic method had difficulty 
addressing. Specifically, it is believed that the 
accuracy of DCNN-ROI will significantly 
improve by increasing the number of study 
cases.   
   Therefore, enhancing the precision of the 
DCNN-ROI method requires an expansion of the 
training dataset. Conducting clinical trials 
involving the same patients is essential for 
comparing the conventional method with the 
DCNN-ROI method, thereby validating their 
respective merits and drawbacks and 
elucidating their distinct characteristics. 
   Three researchers extracted the respective 
optimal ROI areas from the chest RI-
angiography image and trained the U-net to 
learn the average area. The utility of this 
program could be further demonstrated by 
requesting the analysis of manual ROIs by 
operators not involved in the DCNN's 
automated ROI analysis program. 
   In the PA-ROI setting by the DCNN-ROI 
method, it is difficult to separate the descending 
vena cava, right heart system, and PA in cases 
where they are located close to each other, 
which may negatively affect the accuracy of ROI. 
Therefore, there is currently no other choice but 
to perform manual procedures for cases with 
peculiar anatomical locations, and future 
countermeasures are necessary to address 
these cases. 
   In this study, 1-peak TAC is the target of 
analysis for PA ROI (SIMS) (Figure 3a), and 2-
peak TAC is a prerequisite for AAo-ROI (IBUR) 
(Figure 3b). In particular, the injection rate of 
radiopharmaceuticals is very important. It 
should be recognized that extremely slow 
injection rates are unsuitable for quantitative 
analysis. For this reason, this study excluded 
data for slow injection rates from the analysis. 
   This study presents results from a single 
institution and devices. Hence, it is necessary 
for future research to conduct the validation 
using different equipment in various facilities. 

 
Conclusion 
   New ROI-setting programs were developed 
using a deep convolution neural net-work DCNN 
to determine the input functions for the SIMS and 
IBUR methods. The accuracy of this method was 
comparable to that of manual ROI methods that 
utilize mathematical phase image analysis. 
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