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Objective (s): Various iterative reconstruction algorithms in nuclear medicine have 
been introduced in the last three decades. For each new imaging system, it is wise to 
select appropriate image reconstruction algorithms and evaluate their performance. 
In this study, three approaches of image reconstruction were developed for a novel 
desktop open-gantry SPECT system, PERSPECT, to assess their performance in terms of 
the quality of the resultant reconstructed images. 
Methods: In the present work, a proposed image reconstruction algorithm for the 
PERSPECT, referred to as quasi-simultaneous multiplicative algebraic reconstruction 
technique (qSMART), together with two popular image reconstruction methods, 
maximum-likelihood expectation-maximization (MLEM) and ordered-subsets EM 
(OSEM), were implemented and compared. Analytic and Monte Carlo simulations were 
applied for data acquisition of various phantoms including a micro-Derenzo phantom. 
All acquired data were reconstructed by the three algorithms using different number 
of iterations (1-40). A thorough set of figures-of-merit was utilized to quantitatively 
compare the generated images.
Results: OSEM depicted reconstructed images of higher (or matching) quality in 
comparison to qSMART. MLEM also reached nearly similar quality as OSEM but at 
higher number of iterations. The graph of data discrepancy revealed that the ranking of 
the three approaches in terms of convergence speed is as qSMART, OSEM, and MLEM. 
Furthermore, bias-versus-noise curves indicated that optimal bias-noise results were 
achieved using OSEM. 
Conclusion: The results showed that although qSMART can be applied for image 
reconstruction if being halted in the early iterations (up to 5), the best achievable 
quality of images is obtained using the OSEM. 
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Introduction
Given drawbacks of analytic image 

reconstruction methods, dominantly filtered 
back projection (FBP), iterative reconstruction 

methods have been becoming the prominent 
methods for image reconstruction in SPECT and 
PET (1). Analytic image reconstruction methods 
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commonly utilize simplistic models of emission 
and detection processes, and the resulting 
images suffer from streak artefacts and noise. By 
contrast, iterative reconstruction techniques can 
incorporate sophisticated models for emission 
and detection, including statistical properties of 
the emission process, attenuation, scatter, detector 
response function, etc. The various iterative image 
reconstruction approaches can be divided into two 
main categories: those considering the statistical 
nature of the data and the ones that do not (2). One 
of the most common algorithms in the first category 
is maximum-likelihood expectation-maximization 
(MLEM) (3, 4) in which Poisson distribution is 
considered for emission process. In MLEM, the 
superposition of the differences between all the 
projection rays and the forward projection of the 
estimated image are used for updating the image. 
Since a main challenge in iterative reconstruction 
is the convergence speed, the accelerated version 
of MLEM which is known as ordered-subsets 
expectation-maximization (OSEM) (5) is also 
a popular option in nuclear medicine image 
reconstruction. In each subiteration of OSEM, a 
subset of projections are used for updating leading 
to faster convergence in comparison to MLEM; a 
full iteration is completed when all subsets are 
used. Algebraic reconstruction technique (ART) (6) 
belongs to the second category of non-statistical 
iterative reconstruction methods. ART is identified 
as a row-action method where the difference 
between the estimated image and the measured 
projection for each projection ray is used for 
updating the image voxels on the path of that ray (2). 
Given the numerous updates (equal to the number 
of views) in each reconstruction iteration, ART 
can be a fast algorithm. However, it is susceptible 
to noise in particular in the case of multiplicative 
ART (MART) in which the update is performed by 
multiplication of the error. It should be remarked 
that the simultaneous version of MART (SMART) is 
similar to the MLEM method (2). More details about 
the abovementioned reconstruction approaches 
are provided in Methods.

PERSPECT is a desktop open-gantry system 
whose design concept was recently proposed (7, 
8). It consists of an imaging desk together with a 
tilted collimator-detector pair (the head) which 
is located beneath the desk. The head rotates 
around the object in a step-and-shoot manner 
for data acquisition. For image reconstruction, an 
algorithm entitled Finite-Aperture-Based Circular 
Projections (FABCP) was developed and applied 
through a forward/backward projector pair in a 
subsetized MLEM (subset size of one) algorithm 

which can be also considered as an MART-based 
method.

In this study, we developed two other image 
reconstruction algorithms to compare their 
performance in terms of image quality as applied 
to the PERSPECT relative to the original proposed 
image reconstruction algorithm. Both Monte Carlo 
(MC) and analytical simulations were utilized for 
data acquisition. The acquired data of various 
phantoms were then reconstructed using the 
three reconstruction codes. In addition to visual 
comparisons of the reconstructed images, some 
quantitative figures of merit were calculated. 
Furthermore, image reconstruction was 
performed at different number of full iterations 
to assess the effect of number of iterations on the 
resultant image quality.

Methods
Data Acquisition

PERSPECT is a newly patented concept for 
desktop SPECT imaging of small animals or small 
organs of human. In contrast to the conventional 
SPECT systems with a rotating gantry which 
usually leads in a closed-gantry structure, the 
PERSPECT provides an open imaging desk for 
locating the object to be imaged. A head rotates 
around the object underneath the desk with a 
tilt angle in a step-and-shoot manner for data 
acquisition in different views (7, 8). Although the 
system is capable of applying any type of collimator 
and/or detector, pinhole collimator together with 
scintillator crystal detector have been already 
assessed and showed to have acceptable results 
(8). Figure 1 represents a schematic view of the 
PERSPECT scanner.

For the majority of the measurements in 
this work, MC simulations were used for data 
acquisition. Geant4 Application for Tomographic 
Emission (GATE) toolkit (version 6.1) (9, 10) was 
applied for this aim. For all MC simulations, we 
applied a double knife-edge pinhole collimator 
with diameter of 1 mm, opening angle of 56°, and 
thickness of 5 mm. A sodium iodide thallium-
activated [NaI(Tl)] crystal with the size of 30 cm×30 
cm×3/8 in. was considered as the scintillator 
detector. Energy resolution, intrinsic spatial 
resolution, and energy window were respectively 
simulated as 10% at 140 keV, 3 mm, and 125-
155 keV. Likewise, detector tilt angle, pinhole-to-
center-of-image-matrix distance, and pinhole-to-
detector distance were set to 30°, 18.75 mm and 
30 cm, respectively. Projection data were stored in 
512×512 matrices. For all assessments reported in 
this work, the abovementioned parameter values 
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were utilized for the data acquisition, except if 
stated otherwise.

For spatial resolution calculation, a point 
source with activity of 740 kBq was simulated at 
the center of field-of-view (FOV). Furthermore, 
to compute normalized squared error (NSE), as a 
measure of similarity between the reconstructed 
image and the hypothetical reference image, 
noise [in terms of percentage standard deviation 
(STD%)], non-uniformity, and bias, a spherical 
phantom with diameter of 10 mm including a 
total activity of 103.6 MBq (Tc-99m) with uniform 
concentration was simulated at the center of the 
FOV. Moreover, to measure contrast and contrast-
to-noise ratio (CNR), two concentric spheres with 
diameters of 10 mm and 3 mm were used as the 
background and the hot regions, respectively. Both 
spheres had uniform activity concentration of Tc-
99m with values leading to hot-to-background 
activity concentration of 4.7.

Furthermore, a micro-Derenzo phantom was 
simulated using the analytical simulator introduced 
in Ref. (8). The phantom was defined as a voxelized 
source phantom in a 201×201×201 matrix with 
voxel size of (0.1 mm)3. It consists of a cylinder 
20 mm in both diameter and thickness with six 
sections each containing some hot rods with 
diameters of 1.2 mm, 1.7 mm, 2.5 mm, 3.3 mm, 4.2 
mm, and 4.9 mm. The center-to-center distance of 
the rods in each section is twice the corresponding 
rods’ diameter. Total activity of the rods was 
considered as 74 MBq. For scanning, the phantom 
was simulated as rods were perpendicular to the 
imaging desk. Also, some scan parameters were 

changed from what was set for MC simulations. 
The different parameters were pinhole diameter, 
tilt angle, and detector size that were respectively 
set to 0.5 mm, 40°, and 50 cm×50 cm.

For all the above scans, data acquisition was 
performed via 16 views over a 360° angular span 
with scan time of 60 s per view (120 s per view for 
the micro-Derenzo phantom).

It is remarked that since the attenuation/
scatter effects are not significant (nor of interest) 
for small-size objects like the ones used in the 
current study, no attenuating/scattering medium 
was simulated in the scans to gain ease and short 
simulation time.

Image Reconstruction Approaches
Three different image reconstruction algorithms 

were implemented in a C++ platform to assess image 
quality performance. The FABCP algorithm (8) 
was applied for developing the forward-backward 
projector pair in all three image reconstruction 
methods.

FABCP method for pinhole systems is based on 
modeling the pinhole by a finite aperture with a 
resolution-related effective diameter (dre) which is 
calculated as (11, 12):

(1)

where d, µ, and α denote the physical diameter of 
the pinhole, linear attenuation coefficient of the 
collimator, and the opening angle of the pinhole, 
respectively. In the current work, geometric 
efficiency of the collimator was also modeled 

Figure 1. A schematic view of the PERSPECT with pinhole collimator. The arrow shows the rotation path of the head beneath the 
imaging desk
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in the image reconstruction algorithm. For 
implementing this, the geometric efficiency (E) 
of the collimator corresponding to each image 
voxel was calculated and taken into account 
through the forward projection step using 
Equation 2 (13):

	
                                                                          (2)

where θ is the incidence angle of the hypothetical 
line connecting the voxel to the center of the 
aperture on the aperture plane, h is the distance 
of the voxel from the pinhole, and  denotes the 
sensitivity-related effective diameter of the pinhole 
formulated as (11, 14-18):

	
                                                          

                (3)

From the algorithm classification point of 
view in iterative image reconstruction, the image 
reconstruction algorithm introduced in Ref. (8) 
(as a subsetized MLEM)  can also be assumed 
as a quasi-SMART method where the expected 
projections are first computed by forward 
projection of the current estimate of the image 
(an initial estimate at the first view of the first 
iteration). The ratio of the measured projections 
to the expected projections then is calculated and 
backprojected to the current estimated image 
to update it and generate the new estimate. 
The forward and backward projection steps are 
performed using the projector-backprojector 
pair. In ART, the process is performed in a ray-
by-ray manner and all image voxels along the 
ray are updated. However, in the original image 
reconstruction of the PERSPECT, all projection 
bins corresponding to each image voxel are 
considered for update while the process is 
performed view-by-view; this is why we call 
it quasi-SMART (qSMART). The general MART 
algorithm is formulated as (2):

	 	               (4)

where  and  refer to the current and 
previous estimates of the jth voxel in the image, 
respectively. In addition,  and  denote the 
elements of system matrix and projection matrix, 
respectively.

The qSMART algorithm can be formulated as:
	

	 (5)

Here, v’ denotes the projection bins of view 
v corresponding to image voxel fj (based on the 
FABCP algorithm) and Ncorr. bins are the number of 
bins in v’.

Moreover, MLEM and OSEM approaches were 
developed using the FABCP forward-backward 
projector pair. The MLEM method is formulated 
for a single voxel as (2-4):

		                                                   (6)

In a similar way, the OSEM can be formulated 
by (2):

(7)

here, Sn denotes the subsets and n N is the subset 
size.

It is remarked that Eq. 6 and 7 provided 
above are the general formulas of respectively 
MLEM and OSEM. However, in the current work 
applying FABCP algorithm through forward/
backward projection pair, they alter slightly when 
implementing.

Noticing that using four subsets with the least 
correlation can lead to faster convergence (2, 19), 
we used the projection view data in an order having 
four equally-spaced subsets through angular span 
of the scan i.e. four subsets with subset size of four 
for the current data acquisition setup.

It is worth noting that the developed OSEM 
with subset size of one is similar to qSMART.

All the datasets were reconstructed with all 
the three reconstruction approaches including 
qSMART, MLEM, and OSEM using image matrix size 
of 101×101×101 and voxel size of (0.2 mm)3. The 
initial estimate was a 3D all-ones matrix. To assess 
the image quality against the number of iterations, 
the number of full iterations was changed from 1 
to 40 and all figures of merit of image quality (see 
next subsection) were computed for each iteration 
number. 

Figures of Merit
To calculate spatial resolution along each 

direction (x, y, and z), all slices of the reconstructed 
images along the other two directions were 
summed to form the count profile along the 
specified direction. A Gaussian was fitted on each 
count profile, and its full-width at half-maximum 
(FWHM) was considered as the resolution along 
the given direction. FWHM values along the three 
directions then were averaged to form the mean 
spatial resolution.
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To compute non-uniformity and STD%, a 
sphere 3/4 in diameter as the considered uniform-
activity sphere was drawn on the reconstructed 
image as the volume-of-interest. Non-uniformity 
(in percentage) was calculated as:

	
(8)

where max and min denote the maximum and the 
minimum values in the volume of interest (VOI), 
respectively.

Moreover, bias, as a measure of systematic error, 
was computed in the VOI introduced above as:

	
	                                                           (9)

Here, meanVOI and  stand for mean value 
of the VOI and total activity of the VOI in the 
phantom, respectively.

Using bias and STD% (as a measure of noise) at 
different number of iterations, bias-noise curves 
were plotted for each reconstruction method to 
provide an important scale of the performance of 
the corresponding reconstruction algorithm.

Furthermore, contrast and CNR were measured 
in the corresponding reconstructed images as:

	         
                    (10)

	              
 (11)

in which meanH, meanBG, AH/ABG, and  are 
the mean values of the hot and the background 
regions, the actual concentration ratio between the 
hot and the background regions, and the standard 
deviation of the background region, respectively.

NSE for each resultant image was calculated as:
	

(12)

Here, I, Iref, n, and N are the reconstructed image 
matrix, the reference image matrix, the voxel index 
number, and the total number of voxels in the 
matrix, respectively. The reference matrix was a 
3D image matrix with the size of the reconstructed 
image matrix containing a 10 mm-diameter sphere. 
Prior to the calculation, both the reconstructed 
matrix and the reference matrix were normalized 
to the mean value of their own 3D matrix.

The reconstructed images of the micro-
Derenzo phantom were used for obtaining data 
discrepancy between the forward projection 

of the reconstructed image and the measured 
projections as a measure of convergence. Data 
discrepancy was computed as mean squared error 
(MSE) in the projection-space:

	
	 (13)

where V and M are respectively total number of 
views and projection matrix size, and  and 

 denote ith bin at vth view in the measured and 
forward-projected projection matrix, respectively.

Results
Figure 2 shows the central slice of the recon-

structed images of the 10 mm-diameter sphere filled 
with uniform activity concentration reconstructed 
by the three reconstruction approaches introduced 
earlier at different numbers of full iterations. Also, 
the central horizontal count profiles of the shown 
images together with the one of the hypothetical 
reference image were plotted. It can be seen that 
MLEM and OSEM can reach better images. While 
the best image for OSEM occurs at third iteration, it 
happens later for MLEM after 10 iterations.

Similarly, the central slice of the reconstructed 
images of the phantom used for measurement of 
contrast and CNR (a hot sphere inside a background 
sphere) reconstructed by the three reconstruction 
methods at different numbers of full iterations 
are shown in Figure 3. The central horizontal 
count profiles of each image are also sketched 
in addition to the corresponding count profile of 
the hypothetical reference image. The images of 
qSMART are deteriorated by noise effects with 
increasing the number of iterations preventing it 
from reconstructing good images in comparison 
to MLEM and OSEM. OSEM reconstructed the best 
image after three full iterations. MLEM reached its 
best results after 10 iterations. 

Figure 4 demonstrates spatial resolution, 
non-uniformity (percentage), noise (in terms 
of STD%), contrast, CNR, and NSE for the three 
image reconstruction algorithms. All parameters 
were computed and plotted against the number 
of full iterations. As a general observation, the 
trend of graphs relating to MLEM at higher 
number of iterations is similar (not the same) to 
the corresponding ones of OSEM at lower number 
of iterations that would be expected noting that 
OSEM is the accelerated version of MLEM.

To provide a qualitative performance assessment 
of the different image reconstruction algorithms 
on the resultant images at various numbers of 
iterations using a rather complicated phantom, the 
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Figure 2. The central slice of the reconstructed images of the 10 mm-diameter sphere reconstructed by qSMART, MLEM, and OSEM 
methods after 1, 3, 10, 20, 30, and 40 full iterations. The images are normalized to the maximum value of the corresponding slice. The 
central horizontal count profiles of the images together with the one of the corresponding hypothetical reference image are also plotted
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Figure 3. The central slice of the reconstructed images of the contrast phantom reconstructed by qSMART, MLEM, and OSEM methods 
after 1, 3, 10, 20, 30, and 40 full iterations. The images are normalized to the maximum value of the corresponding slice. The central 
horizontal count profiles of the images together with the one of the corresponding hypothetical reference image are also plotted
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reconstructed images of the micro-Derenzo phantom 
are shown in Figure 5. The images correspond to the 
central slice of the image matrix and are normalized 
to the maximum value of the slice. The best results 
can be seen for OSEM after three iterations and MLEM 

after 20 iterations resolving even the smallest section 
of the phantom (1.2 mm) with appropriate quality.

The projection data and the reconstructed 
images of the micro-Derenzo phantom were also 
used for data discrepancy calculations. Figure 6.a 

Figure 4. Spatial resolution, non-uniformity, noise, contrast, CNR, and NSE calculated for the reconstructed images by qSMART, MLEM, 
and OSEM against the number of full iterations
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Figure 5. The central slice of the reconstructed images of the micro-Derenzo phantom reconstructed by qSMART, MLEM, and OSEM 
methods after 1, 3, 10, 20, 30, and 40 full iterations. The images are normalized to the maximum value of the corresponding slice
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Figure 6. Data discrepancy (in terms of MSE) for qSMART, MLEM, and OSEM against the number of full iterations (a) and bias-noise 
curves for qSMART, MLEM, and OSEM (b). For bias-noise curves, the point corresponding to the obtained result of every iteration is 
indicated by a symbol (square for qSMART, circle for MLEM, and triangle for OSEM) on the curves. Also, the first iteration (itr 1) and the 
last assessed iteration (itr 40) are shown for each curve
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shows the discrepancy (calculated as MSE) between 
the measured data and forward-projection-induced 
data against the number of iterations for qSMART, 
MLEM, and OSEM, respectively. The flatness of the 
graph can be translated to convergence. However, 
the scale of the variations (in vertical axis) should be 
taken into account for this regard.

The bias-noise curves of the three 
reconstruction approaches are plotted in Figure 
6.b. As shown, OSEM and MLEM can yield better 
bias-noise pair values in comparison to qSMART.

Discussion
The primary goal of this study was to evaluate 

the performance of two newly-developed image 
reconstruction methods, MLEM and OSEM (with 
4 subsets), versus the previously introduced 
algorithm, qSMART, for a desktop open-gantry 
SPECT system, the PERSPECT. All the mentioned 
reconstruction approaches were implemented as 
some in-house codes. MLEM and OSEM algorithms 
were applied as two classical methods through 
a dedicated implementation for the case of the 
PERSPECT. FABCP algorithm was applied for 
development of forward/backward projector 
pair in all the three reconstruction methods. MC 
simulation was used for the vast majority of the 
data acquisition scans. However, a pre-verified 
analytical model (8) of the system was used 
for simulation of the micro-Derenzo phantom. 
The acquired projection data corresponding to 
each phantom were reconstructed by the three 
reconstruction codes independently, using 
different number of full iteration numbers up to 
40. In addition to provide the sample slices of 
the reconstructed images as a sense of quality, 
a thorough set of quantitative parameters were 
calculated for each reconstruction method at each 
iteration number. In the following, the obtained 
results reported in the previous section are 
discussed.

In general, ART has a relatively low 
computational effort in comparison to statistical-
based iterative reconstruction techniques (2). 
This is mainly due to numerous update processes 
performed through each iteration of ART. 
However, the multiplicative approach of updating 
in MART introduces the disadvantage of noise 
susceptibility for it. With respect to the noisy 
data in nuclear medicine, such a susceptibility to 
noise is translated into noisier resultant images 
with increasing the number of iterations. It 
should be stated that such a noise amplification 
characteristics against the number of iterations 
is also seen in MLEM and its accelerated version, 

OSEM, regarding the multiplicative approach of 
updating applied. However, noting that in MART 
the image is updated by every projection ray in 
each iteration while in MLEM (and OSEM) such 
updates are performed once in every iteration 
(subiteration), noise handling performance of 
MLEM and OSEM is expected to be better than 
MART methods. 

As seen in Figure 2 from the visual point of 
view, whereas OSEM produces a good image after 
three iterations, MLEM still needs more iterations 
to reach a satisfactory result demonstrating the 
expected acceleration of OSEM over MLEM. MLEM 
finally reconstructed its best result after ten 
iterations. The reconstructed image of OSEM at the 
third iteration is almost similar to the one of MLEM 
at the tenth iteration regarding the count profiles. 
Noise amplification harshly affects the image 
quality in qSMART with increasing the number 
of iterations causing qSMART to reconstruct its 
best image after three iterations while it is still 
poorer than the best ones of OSEM and MLEM. 
OSEM images also gets noisier at higher number 
of iterations. MLEM, regarding its fewer updates 
in each iteration, amplifies noise at high iteration 
numbers less than the other methods but showing 
a very slow convergence speed.

Similar to the trend seen in Figure 2, the 
reconstructed images in Figure 3 for the contrast 
phantom show that OSEM achieves the best answer 
after three iterations. qSMART also reaches its best 
result after three iterations which is poorer than 
the one of OSEM. MLEM, demonstrating its relative 
slowness, converges to an acceptable image after 
ten iterations. Noise enhancement of the all 
reconstruction approaches versus increasing the 
iteration number can be clearly seen while MLEM 
and qSMART has respectively the least and the 
most susceptibility to noise. 

Figure 4 illustrates most of the calculated 
figures of merit of the images reconstructed by 
qSMART, MLEM, and OSEM versus the number of 
iterations. Figure 4.a shows that qSMART reaches 
its final achievable spatial resolution with very 
low computational effort: only two iterations. 
OSEM reaches the same spatial resolution as what 
qSMART achieved after nine full iterations. In 
contrast, MLEM reconstructed such results after 
about 35 iterations while its resultant spatial 
resolution at iterations below five is very poor. 
Regardless of the required number of iterations, 
all methods can accomplish the same spatial 
resolution.

Figure 4.b reveals that the uniformity of the 
reconstructed images by OSEM monotonically 
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decreases (i.e. non-uniformity increases) with 
iteration number. Such a trend is seen similarly 
for MLEM and qSMART after respectively the 
fifth and the second iteration. The best achieved 
uniformity value (non-uniformity of 10.1%) 
belongs to MLEM method at the fifth iteration. 
While qSMART reconstructed more non-uniform 
images with higher slope non-uniformity graph 
against number of iterations, the best images 
in terms of uniformity, also having the most 
deliberate ascending non-uniformity correspond 
to MLEM. It should also be noted that in the first 
three iterations, the uniformity of the images 
reconstructed by OSEM are better than the ones 
of MLEM.

Figure 4.c shows that the minimum amount of 
noise (STD% of 2.7%) is achieved using MLEM at 
the seventh iteration. The best result of qSMART 
and OSEM in terms of noise happens at the third 
and the second iteration, respectively. After 
experiencing the minimum point, the noise level of 
the resultant images of all methods increases with 
increasing the number of iterations. However, 
MLEM has the least susceptibility to noise whereas 
qSMART has the worst behavior against noise. 
The fact that MLEM (and its accelerated version, 
OSEM) introduces noise to the reconstructed 
images in particular at higher number of 
iterations is well known in the literature (2, 20, 
21). As explained earlier, regarding the numerous 
updates within every full iteration in qSMART 
and the multiplicative nature of the update, the 
deterioration of the reconstructed images by noise 
with increasing the number of iterations is more 
sever in qSMART.

The contrast of the reconstructed image of 
the corresponding phantom using the three 
reconstruction methods versus iteration number 
is depicted in Figure 4.d. As shown, the highest 
contrast is obtained by qSMART with approximate 
value of 0.9, 10% less than the highest achievable 
value. OSEM reaches its highest contrast 
value (0.86) at 23rd iteration. MLEM continues 
reconstructing images of higher contrast with 
increasing the number of iterations reaching 
the value of 0.85 at the 40th iteration. However, 
neglecting the small increment of contrast with 
increasing the number of iterations, it can be seen 
that for all the reconstruction approaches, contrast 
enters a plateau region from about iteration 5 for 
qSMART and OSEM and 15 for MLEM.

As shown in Figure 4.e, the CNR calculated in 
images reconstructed by qSMART is larger than 
the one of MLEM and OSEM for iteration numbers 
less than eight regarding the relatively higher 

contrast values obtained by qSMART. However, 
with increasing the number of iterations, CNR 
of images reconstructed by qSMART rapidly 
decreases due to noise impact (Figure 4.c). OSEM 
reaches almost the same CNR as the highest CNR 
of qSMART after 19 iterations while CNR of MLEM 
slowly continues increasing.

NSE as a good figure of merit showing the 
similarity between the reconstructed image and 
the reference image was reported in Figure 4.f. 
Evidently, the lower NSE can be translated to 
better performance of the image reconstruction 
algorithm in generating an image more similar to 
the true image. As seen in Figure 4.f, in the first five 
iterations, qSMART resulted in smaller NSE values 
relative to MLEM and OSEM. However, at the sixth 
iteration, OSEM reaches the same NSE value as 
qSMART where qSMART starts generating worse 
NSE as the number of iterations increases. All the 
three methods could achieve almost the same NSE 
value but after different number of iterations; 
three iterations for qSMART, 35 iterations for 
MLEM, and 12 iterations for OSEM.

The reconstructed images of the micro-
Derenzo phantom in Figure 5 reflect the 
performance of the reconstruction approaches 
for a rather complex phantom. As seen, although 
qSMART could reconstruct good images after 
three iterations, the reconstructed images get so 
noisy at higher number of iterations. On the other 
hand, MLEM and OSEM reconstructed acceptable 
images after respectively ten and three iterations 
while their best results occurred respectively after 
20 and ten iterations. The highlight is that noise-
induced degradation in the images of MLEM and 
OSEM with increasing the number of iterations 
is tolerable while this is not true in the case of 
qSMART. 

Data discrepancy (quantified by MSE) against 
the number of iterations using the micro-Derenzo 
dataset was plotted in Figure 6.a for qSMART, 
MLEM, and OSEM. Regarding Equation 13, data 
discrepancy can show the convergence of the 
algorithm when no significant variation is seen in 
its value by increasing the number of iterations. 
Figure 6.a reflects what would be theoretically 
expected of the convergence speed of the three 
reconstruction algorithms. While qSMART and 
OSEM reached a plateau region, which can be 
translate to convergence, after about ten and 15 
iterations, MLEM enters such a region at very higher 
number of iterations close to iteration 40. However, 
it should be remarked that although theoretically 
with increasing the number of iterations, MLEM 
and OSEM converge to a maximum likelihood 
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solution (this can be translated to lower MSE value 
[Equation 13] for qSMART), but the convergence 
does not inevitably indicate that the resultant 
image is close to the true image (2, 21, 22). 
The convergence actually implies a small error 
between the forward projection of the obtained 
image and the measured projection. Also, it can be 
interpreted as no significant improvement in the 
reconstructed image is expected to happen after 
the convergence.

Figure 6b shows the bias versus noise curves for 
qSMART, MLEM, and OSEM obtained at different 
number of iterations. Considering the bias and 
noise as measures of respectively systematic error 
and random error in the reconstructed images, 
the best region in the graph is where both bias 
and noise have low values.  As shown, MLEM 
reconstructed images of high bias at low number 
of iterations. But at higher number of iteration, it 
could reach a region with bias lower than 11% and 
STD% lower than 5%. Similar to MLEM, qSMART 
has large values of bias and noise at the first 
iteration. But, soon it could reach bias and noise 
values below respectively 11% and 6% after three 
iterations. The noise-bias curve, however, rapidly 
moves toward large values of noise with increasing 
the number of iterations. Overall, it is shown that 
OSEM and MLEM are quantitatively superior to the 
qSMART algorithm, achieving lower noise (bias) 
at a given bias (noise) value, as can be seen by 
drawing vertical (horizontal) lines in the noise vs. 
bias trade-off curves. 

As shown in Results and discussed earlier 
in the current section, if qSMART is applied 
for image reconstruction of the PERSPECT, the 
reconstruction process should be halted at very 
low number of iterations (first five iterations) 
for the image quality is severely degraded at 
higher number of iterations. However, the results 
showed that qSMART cannot produce the best 
achievable images. Instead OSEM (and MLEM at 
high number of iterations) can reconstruct images 
of higher quality in comparison to qSMART with 
much degradation with increasing the number of 
iterations. Noting again is worth it that qSMART 
can also be considered as OSEM with subset size 
of one (16 subsets when having 16 views). Since 
OSEM was performed using four subsets, further 
studies can be performed analyzing the effect of 
different subset sizes/number of subsets.

Conclusion
In this study, the performance of three 

developed image reconstruction approaches 
including qSMART, MLEM, and OSEM were 

assessed and compared for a novel desktop open-
gantry SPECT system. Various phantoms were 
simulated and the acquired projection data were 
then reconstructed separately using each method 
by different number of iterations to evaluate the 
quality of the reconstructed images both visually 
and by a thorough set of quantitative figures-of-
merit. The proposed approach in OSEM depicted 
best performance in terms of computational effort 
and achievable image quality and quantitation. 
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