A case of cardiac amyloidosis incidentally detected by bone scintigraphy

Document Type : Case report


1 Department of Diagnostic Radiology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan

2 Department of Radiology, Kindai University Faculty of Medicine, Osaka, Japan

3 Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan

4 Department of Respiratory Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan


A 73-year-old man with lung cancer underwent bone scintigraphy for disease staging. Diffuse myocardial technetium hydroxymethylene diphosphonate (99mTc-HMDP) uptake was incidentally found. A diagnosis of amyloid transthyretin (ATTR) cardiac amyloidosis was suspected, although the patient had no symptoms at this time. Single-photon emission computed tomography (SPECT) showed particularly strong uptake in the ventricular septum. Cardiac magnetic resonance imaging (CMR) showed widespread subendocardial and partly transmural enhancement of the left ventricular myocardium on delayed postcontrast T1-weighted images. These findings were consistent with ATTR cardiac amyloidosis. 18F-FDG uptake in the left ventricle wall was observed on PET/CT. He was finally diagnosed with ATTR by endomyocardial biopsy. There are two major subtypes of cardiac amyloidosis: ATTR amyloidosis and amyloid light-chain (AL) amyloidosis. Endomyocardial biopsy is the gold standard for diagnosis. Recently, however, several reports have shown that bone scintigraphy using a 99mTc-labelled bone-seeking agent can detect ATTR cardiac amyloidosis and differentiate it from AL amyloidosis. Bone scintigraphy may play an important role in the detection and differentiation of ATTR cardiac amyloidosis.


Main Subjects

1. Gao M, Liu Q, Chen L. Cardiac amyloidosis as a rare cause of heart failure: A case report. Medicine (Baltimore). 2019; 98(14):e15036.
2. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretinrelated versus light-chain cardiac amyloidosis. Circulation. 2014; 129(18): 1840-1849.
3. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/ EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2-Evidence Base and Standardized Methods of Imaging. J Card Fail. 2019; 25(11):e1-e39.
4. Lu Y, Groth JV, Emmadi R. Cardiac amyloidosis detected on tc-99m bone scan. Nucl Med Mol Imaging. 2015; 49(1):78-80.
5. Fathala A. Incidentally detected cardiac amyloidosis on 99mTc-MDP bone scintigraphy. Radiol Case Rep. 2020; 15(6):705-708.
6. Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2018: Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid. 2018; 25(4):215-219.
7. Rind J, Chalfoun N, McNamara R. Cardiac amyloidosis: The great masquerader. Glob Cardiol Sci Pract. 2018; 2018(2):18.
8. Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis. Clin Med (Lond). 2018; 18(Suppl 2):s30-s35.
9. Lebovic D, Hoffman J, Levine BM, Hassoun H, Landau H, Goldsmith Y, et al. Predictors of survival in patients with systemic light-chain amyloidosis and cardiac involvement initially ineligible for stem cell transplantation and treated with oral melphalan and dexamethasone. Br J Haematol. 2008; 143(3):369-373.
10. Brouwers S, Laptseva N, Gerber B, Schwotzer R, Ruschitzka F, Flammer AJ. Cardiac amyloidosis. Cardiovasc Med. 2018; 21(11): 282-289 .
11. Selvanayagam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol. 2007; 50(22):2101-2110.
12. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation. 2015; 132(16):1570-1579.
13. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretinrelated familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013; 6(2):195-201.
14. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation. 2016; 133(24): 2404-2412.
15. Wale DJ, Wong KK, Savas H, Kandathil A, Piert M, Brown RK. Extraosseous Findings on Bone Scintigraphy Using Fusion SPECT/CT and Correlative Imaging. AJR Am J Roentgenol. 2015; 205(1):160-172.
16. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005; 46(6):1076-1084.
17. Pradel S, Brun S, Victor G, Pascal P, Fournier P, Ribes D, et al. Pattern of myocardial 99mTcHMDP uptake and impact on myocardial function in patients with transthyretin cardiac amyloidosis. J Nucl Cardiol. 2020; 27(1):96-105.
18. Kumita S, Yoshinaga K, Miyagawa M, Momose M, Kiso K, Kasai T, et al. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis- 2018 update: Japanese Society of Nuclear Cardiology recommendations. J Nucl Cardiol. 2019; 26(4):1414-1433.