1. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: A clinical perspective. Nuclear Medicine Communications. 2004; 25 (7): 651–656.
2. Dale L. Bailey, Kathy P. Willowson. An Evidence-Based Review of Quantitative SPECT Imaging and Potential Clinical Applications. J Nucl Med. 2013; 54 (1): 83-89.
3. Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M. Skeletal standard-ized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. Eur J Hybrid Imaging. 2017; 1(1): 2.
4. Burger C, Goerres G, Schoenes S, Buck A,Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the trans-formation of CT into PET 511keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002; 29(7): 922-927.
5. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013; 54(1): 83-89.
6. Monzen Y, Tamura A, Okazaki H, Kurose T, Kobayashi M, Kuraoka M. SPECT/CT Fusion in the Diagnosis of Hyperparathyroidism. Asia Ocean J Nucl Med Biol. 2015; 3(1): 61–65.
7. Vija AH. Introduction to x SPECT Technology: Evolving Multi-modal SPECT to Become Context-based and Quantitative. White paper 2013. https://static.health care.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/ groups/public/@global/@imaging/@molecular/ documents/download/mdax/ otiz/~edisp/final_new_xspect_wp.2-00960488. pdf (Accessed 2020.05.10)
8. Okuda K, Sakimoto S, Fujii S, Ida T, Moriyama S. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomo-graphy Image Reconstruction Using Conjugate-gradient Algorithm. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017; 73(10):1039‐1044.
9. Goto M, Tominaga C, Taura M, Azumi H, Sato K, Homma N, et al. A method to measure slice sensitivity profiles of CT images under low-contrast and high-noise conditions. Phys Med.2019; 60: 100-110.
10. Nakahara T, Daisaki H, Yamamoto Y, Iimori T, Miyagawa K, Okamoto T, et al. Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study. EJNMMI Res. 2017; 7(1): 53.
11. Ichikawa K. CTmeasure. Japanese society of CT technology. 2012-2014. http://www. jsct- tech. org/ (Accessed 2020. 05.10).
12. National Electrical Manufacturers Association. Performance measurements of positron emission tomographs. NEMA Standards Publication NU 2-2012. Rosslyn: National Electical Manufacturers Asso-Influence of CT slice thickness on SPECT ciation; 2012. http://dea.unsj.edu.ar/ med nuclear/PET-NEMA-NU2-2001.pdf. Accessed 22 Dec 2020.
13. Yan M, Zhang C. Tilted plane Feldkamp type reconstruction algorithm for spiral cone beam CT. Med Phys 2005; 32(11): 3455-67.
14. Mackie A, Hart GC, Williams-Butt JF. Ramp test objects for slice sensitivity profile measurement in spiral CT. Br J Radiol 1997; 70(837): 942-945.
15. Perisinakis K, Papadakis AE, Damilakis J. The effect of x-ray beam quality and geometry on radiation utilization efficiency in multidetector CT imaging. Med Phys 2009; 36(4):1258-1266.
16. Zito F, Gilardi MC, Magnani P, Fazio F. Single-photon emission tomographic
quantification in spherical objects: effects of object size and background. Eur J Nucl Med. 1996; 23(3):263‐271.
17. Coward J, Nightingale J, Hogg P. The Clinical Dilemma of Incidental Findings on the Low-Resolution CT Images from SPECT/CT MPI Studies. J Nucl Med Technol. 2016; 44(3): 167‐172.
18.Okuda K, Fujii S, Sakimoto S. Impact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Funda-mental Characteristics of a Context-specific Reconstruction Method. Asia Ocean J Nucl Med Biol. 2019; 7(1):49‐57.