Unveiling the Metabolic Maze: FDG PET/CT Findings in Peritoneal Carcinomatosis - A Case Series

Document Type : Case Series

Authors

Department of Nuclear Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow, India

10.22038/aojnmb.2024.78270.1552

Abstract

Peritoneal carcinomatosis (PC), the spread of cancer cells in the peritoneum, is a significant concern in advanced gastrointestinal and gynecological cancers. This case series includes findings on the appearance and pattern of PC on 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT). The primary sources of peritoneal dissemination are direct invasion from abdominal or pelvic tumors and metastatic spread from distant tumors. The accurate preoperative diagnosis and quantification of PC play a vital role in determining the appropriate treatment approach, with a particular emphasis on surgical planning. Several imaging modalities have been employed in preoperative evaluation, such as computed tomography (CT), magnetic resonance imaging (MRI), and 18F-FDG PET/CT. Among these modalities, 18F-FDG PET/CT has demonstrated improved anatomical localization and accurate information about the nature of pathological findings. The case series showcases four cases that illustrate the imaging characteristics of PC on FDG PET/CT. FDG PET/CT plays a vital role in diagnosing and assessing PC, aiding in its detection, staging, and treatment planning. It surpasses conventional imaging techniques in identifying and characterizing lesions and detecting the primary tumor site in cases where its location is unknown. Furthermore, FDG PET/CT additionally assists in evaluating treatment response and monitoring disease progression, providing insights into treatment effectiveness and guiding patient management decisions.

Keywords

Main Subjects


  1. Sampson JA. Implantation peritoneal carcinomatosis of ovarian origin. Am J Pathol. 1931; 7(5):423-444.39.
  2. Coccolini F, Gheza F, Lotti M, Virzì S, Iusco D, Ghermandi C, et al. Peritoneal carcinomatosis. World J Gastroenterol WJG. 2013; 19(41):6979–94.
  3. Raptopoulos V, Gourtsoyiannis N. Peritoneal carcinomatosis. Eur Radiol. 2001; 11(11): 2195–206.
  4. Deraco M, Santoro N, Carraro O, Inglese MG, Rebuffoni G, Guadagni S, et al. Peritoneal carcinomatosis: Feature of dissemination a review. Tumori J. 1999; 85(1):1–5.
  5. Ren K, Xie X, Min T, Sun T, Wang H, Zhang Y, et al. Development of the peritoneal metastasis: A review of back-grounds, mechanisms, treatments and prospects. J Clin Med. 2022; 12(1):103.
  6. González-Moreno S, González-Bayón L, Ortega-Pérez G, González-Hernando C. Imaging of peritoneal carcinomatosis. Cancer J. 2009; 15(3):184.
  7. Kim SJ, Lee SW. Diagnostic accuracy of 18F-FDG PET/CT for detection of peritoneal carcinomatosis; a systematic review and meta-analysis. Br J Radiol. 2018; 91(1081): 20170519.
  8. Koga S, Kaibara N, Iitsuka Y, Kudo H, Kimura A, Hiraoka H. Prognostic significance of intraperitoneal free cancer cells in gastric cancer patients. J Cancer Res Clin Oncol. 1984; 108(2):236–8.
  9. Weiss L. Metastatic Inefficiency. In: Vande Woude GF, Klein G, editors. Advances in cancer research [Internet]. Academic Press; 1990 [cited 2023 Jun 30]. p. 159–211. Available from: https://www. sciencedirect. com/science/article/pii/S0065230X08608118.
  10. Jacquet P, Sugarbaker PH. Wound recurrence after laparoscopic colectomy for cancer. Surgical Endoscopy. 1996; 10(3): 295–6.
  11. Devita VT, Lawrence TS, Rosenberg SA. Cancer: principles and practice of oncology. Philadelphia, Pa.: Lippincott Williams and Wilkins; 2008.
  12. Sugarbaker PH. Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. Cancer Treatment and Research. 1996; 82:79–100.
  13. Vicens RA, Patnana M, Le O, Bhosale PR, Sagebiel TL, Menias CO, et al. Multimodality imaging of common and uncommon peritoneal diseases: a review for radiologists. Abdominal Imaging. 2014; 40(2):436–56.
  14. Szadkowska MA, Pałucki J, Cieszanowski A. Diagnosis and treatment of peritoneal carcinomatosis - a comprehensive overview. Pol J Radiol. 2023; 88: e89–97.
  15. Archer AG, Sugarbaker PH, Jelinek JS. Radiology of peritoneal carcinomatosis. Cancer Treat Res. 1996; 82:263–88.
  16. De Bree E, Koops W, Kröger R, van Ruth S, Witkamp AJ, Zoetmulder FAN. Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol. 2004; 86(2): 64–73.
  17. Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the Peritoneal Cancer Index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol. 2015; 22: 1708–15.
  18. Ognong-Boulemo A, Dohan A, Hoeffel C. Adnexal masses associated with peritoneal involvement: diagnosis with CT and MRI. Abdom Radiol NY. 2017; 42:1975–92.
  19. Low RN, Semelka RC, Worawattanakul S, Alzate GD, Sigeti JS. Extrahepatic abdominal imaging in patients with malignancy: comparison of MR imaging and helical CT, with subsequent surgical correlation. Radiology. 1999; 210(3):625–32.
  20. Patel CM, Sahdev A, Reznek RH. Cancer Imaging. CT, MRI, and PET imaging in peritoneal malignancy. Cancer Imaging. 2011; 11: 123–39.
  21. J GP, C GH, D VD. Diffusion-weighted magnetic resonance imaging in peritoneal carcinomatosis from suspected ovarian cancer: diagnostic performance in correlation with surgical findings. Eur J Radiol. 2019; 121: 108696.
  22. Anthony MP, Khong PL, Zhang J. Spectrum of 18F-FDG PET/CT appearances in peritoneal disease. Am J Roentgenol. 2009; 193(6):W523–9.
  23. De Gaetano AM, Calcagni ML, Rufini V, Valenza V, Giordano A, Bonomo L. Imaging of peritoneal carcinomatosis with FDG PET-CT: diagnostic patterns, case examples and Abdom Imaging. 2009; 34(3):391–402.
  24. Panagiotidis E, Datseris IE, Exarhos D, Skilakaki M, Skoura E, Bamias A. High incidence of peritoneal implants in recurrence of intra-abdominal cancer revealed by 18F-FDG PET/CT in patients with increased tumor markers and negative findings on conventional imaging. Nucl Med Commun. 2012; 33(4):431.
  25. Kim HW, Won KS, Zeon SK, Ahn BC, Gayed IW. Peritoneal carcinomatosis in patients with ovarian cancer: enhanced CT versus 18F-FDG PET/CT. Clin Nucl Med. 2013; 38(2):93–7.
  26. Lopez-Lopez V, Cascales-Campos PA, Gil J, Frutos L, Andrade RJ, Fuster-Quiñonero M, et al. Use of (18)F-FDG PET/CT in the preoperative evaluation of patients diagnosed with peritoneal carcinomatosis of ovarian origin, candidates to cytoreduction and hipec. A pending issue. Eur J Radiol. 2016; 85(10):1824–8.
  27. Castro-Mesta JF, González-Guerrero JF, Barrios-Sánchez P, Villarreal-Cavazos G. Bases and foundations of the treatment of peritoneal carcinomatosis: Review article. Med Univ. 2016; 18(71):98–104.
  28. Takii Y, Mizusawa J, Kanemitsu Y, Komori K, Shiozawa M, Ohue M, et al. The conventional technique versus the no-touch isolation technique for primary tumor resection in patients with colon cancer (JCOG1006): A multicenter, open-label, randomized, phase III trial. Ann Surg. 2022; 275(5):849.
  29. Carlier C, Mathys A, De Jaeghere E, Steuperaert M, De Wever O, Ceelen W. Tumour tissue transport after intra-peritoneal anticancer drug delivery. Int J Hyperthermia. 2017; 33(5):534–42.
  30. Glehen O, Cotte E, Schreiber V, Sayag-Beaujard AC, Vignal J, Gilly FN. Intraperitoneal chemo hyperthermia and attempted cytoreductive surgery in patients with peritoneal carcinomatosis of colorectal origin. Br J Surg. 2004; 91(6): 747–54.
  31. Kecmanovic DM, Pavlov MJ, Ceranic MS, Sepetkovski AV, Kovacevic PA, Stamenkovic AB. Treatment of peritoneal carcinomatosis from colorectal cancer by cytoreductive surgery and hyperthermic perioperative intraperitoneal chemotherapy. Eur J Surg Oncol. 2005; 31(2):147–52.
  32. Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemo-therapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(2):256–66.
  33. Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018; 378(3):230–40.
  34. Gonz&aacute S, lez-Moreno LAG, lez-Bay&oacute, N GOP, rez. Hyperthermic intraperitoneal chemotherapy: Rationale and technique. World J Gastrointest Oncol. 2010; 2(2):68–75.
  35. Bree E de, Michelakis D, Stamatiou D, Romanos J, Zoras O. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum. 2017; 2(2):47–62.
  36. Repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for cancers with peritoneal metastasis: A 30-year institutional experience. Springer Link [Internet]. [Cited 2023 Nov 29]. Available from: https://link. Springer. com/article/10.1245/s10434-022-11441-3.
  37. Cancers | Free Full-Text | overcoming drug resistance by taking advantage of physical principles: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) [Internet]. [Cited 2023 Nov 29]. Available from: https:// www.mdpi.com/2072-6694/12/1/ 34.
  38. Non-resectable malignant peritoneal mesothelioma treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC) plus systemic chemotherapy could lead to secondary complete cytoreductive surgery: A Cohort Study | SpringerLink [Internet]. [Cited 2023 Nov 29]. Available from: https://link. Springer. com/article/10.1245/s10434-021-10983-2.
  39. Alyami H, Alsofyani T, Bu Bshait M, Al-Osail EM. Primary Diffuse B-Cell Thyroid Lymphoma: Case Report and Literature Case Rep Oncol. 2018; 11(2):505–10.
  40. Kakchekeeva T, Demtröder C, Herath NI, Griffiths D, Torkington J, Solaß W, et al. In vivo feasibility of electrostatic precipitation as an adjunct to pressurized intraperitoneal aerosol chemotherapy (ePIPAC). Ann Surg Oncol. 2016; 23(5): 592–8.
  41. Bachmann C, Sautkin I, Nadiradze G, Archid R, Weinreich FJ, Königsrainer A, et al. Technology development of hyperthermic pressurized intraperitoneal aerosol chemotherapy (hPIPAC). Surg Endosc. 2021; 35(11): 6358–65.
  42. Taibi A, Teixeira Farinha H, Durand Fontanier S, Sayedalamin Z, Hübner M, Sgarbura O. Pressurized intraperitoneal aerosol chemotherapy enhanced by electrostatic precipitation (ePIPAC) for patients with peritoneal metastases. Ann Surg Oncol. 2021; 28(7):3852–60.
  43. Taibi A, Sgarbura O, Hübner M, Bardet SM, Alyami M, Bakrin N, et al. Feasibility and safety of oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy with or without intraoperative intravenous 5-fluorouracil and leucovorin for colorectal peritoneal metastases: A multicenter comparative cohort study. Ann Surg Oncol. 2022; 29(8): 5243–51.
  44. Graversen M, Detlefsen S, Ellebaek SB, Fristrup C, Pfeiffer P, Mortensen MB. Pressurized intraPeritoneal aerosol chemotherapy with one minute of electrostatic precipitation (ePIPAC) is feasible, but the histological tumor response in peritoneal metastasis is insufficient. Eur J Surg Oncol. 2020; 46(1): 155–9.
  45. Gong Y, Wang P, Zhu Z, Zhang J, Huang J, Wang T, et al. Benefits of surgery after neoadjuvant intraperitoneal and systemic chemotherapy for gastric cancer patients with peritoneal metastasis: A meta-analysis. J Surg Res. 2020; 245: 234–43.
  46. Zang D, Zhang C, Li C, Fan Y, Li Z, Hou K, et al. LPPR4 promotes peritoneal metastasis via Sp1/integrin α/FAK signaling in gastric Am J Cancer Res. 2020; 10(3):1026–44.
  47. Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer 2020; 65: 176–88.
  48. Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res. 2013; 19(6): 1363–74.
  49. Miller AM, Lemke-Miltner CD, Blackwell S, Tomanek-Chalkley A, Gibson-Corely KN, Coleman KL, et al. Intraperitoneal CMP-001: A novel immunotherapy for treating peritoneal carcinomatosis of gastro-intestinal and pancreaticobiliary Cancer. Ann Surg Oncol. 2021; 28(2): 1187–97.
  50. Sabree SA, Voigt AP, Blackwell SE, Vishwakarma A, Chimenti MS, Salem AK, et al. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J Immunother Cancer. 2021; 9(6): e002484.
  51. Szadkowska MA, Pałucki J, Cieszanowski A. Diagnosis and treatment of peritoneal carcinomatosis - a comprehensive overview. Pol J Radiol. 2023; 88: e89–97.
  52. Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016; 21(11): 1835–49.
  53. Xu S, Fan H, Yin L, Zhang J, Dong A, Deng L, et al. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcino-matosis. Eur J Pharm Biopharm. 2016; 104: 251–9.
  54. Intraperitoneal delivery of cisplatin via a hyaluronan-based nanogel/in situ cross-linkable hydrogel hybrid system for peritoneal dissemination of gastric cancer | molecular pharmaceutics [Internet]. [Cited 2023 Nov 30]. Available from: https:// pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b00349.
  55. Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, et al. Tunneling nanotubular express-ways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma. ACS Nano. 2019; 13(2): 1078–96.
  56. Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci - Céspedes - 2020 - Advanced Materials - Wiley Online Library [Internet]. [Cited 2023 Nov 30]. Available from: https://onlinelibrary. wiley.com/
  57. Van de Sande L, Cosyns S, Willaert W, Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv. 2020; 27(1): 40–53.
  58. Pfannenberg C, Königsrainer I, Aschoff P, Öksüz MÖ, Zieker D, Beckert S, et al. 18F-FDG-PET/CT to select patients with peritoneal carcinomatosis for cyto-reductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2009; 16(5): 1295–303.
  59. Sommariva A, Evangelista L, Pintacuda G, Cervino AR, Ramondo G, Rossi CR. Diagnostic value of contrast-enhanced CT combined with 18-FDG PET in patients selected for cytoreductive surgery and hyperthermic intraperitoneal chemo-therapy (HIPEC). Abdom Radiol. 2018; 43(5): 1094–100.
  60. Cistaro A, Cucinotta M, Cassalia L, Priola A, Priola S, Pappalardo M, et al. 18F-FDG PET/CT, cytoreductive surgery and intraperitoneal chemohyperthermia for the therapeutic management in peritoneal carcinomatosis: A pilot study. Rev Esp Med Nucl E Imagen Mol. 2016; 35(4): 232–7.
  61. Königsrainer I, Aschoff P, Zieker D, Beckert S, Glatzle J, Pfannenberg C, et al. Selektion zur Peritonektomie mit hyperthermer intraoperativer Chemotherapie (HIPEC) bei Peritonealkarzinose. Zentralblatt Für Chir.2008; 133(5): 468–72.
  62. Klumpp BD, Schwenzer N, Aschoff P, Miller S, Kramer U, Claussen CD, et al. Preoperative assessment of peritoneal carcinomatosis: intraindividual comparison of 18F-FDG PET/CT and MRI. Abdom Imaging. 2013; 38(1): 64–71.