Whole-Body Bone Scan for Detecting Bone Metastasis in the Prostate-Specific Membrane Antigen Positron Emission Tomography Era: A Retrospective Cohort Study of Post-Radical Prostatectomy Prostate Cancer Patients

Document Type : Original Article

Authors

1 Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

2 Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

10.22038/aojnmb.2025.82544.1582

Abstract

Objective(s): To determine the detection rate of bone metastasis on bone scan of prostate cancer patients with rising serum prostate-specific antigen (PSA) following radical prostatectomy (RP) and to identify the predictive factors associated with bone metastasis.
Methods: A study was conducted in 120 patients with rising serum PSA after RP. The data collected were pre and post-RP clinical parameters, including a trigger PSA (tPSA) level that prompted the treating physician to request a bone scan and PSA doubling time (PSADT). Bone scans were classified as positive or negative in conjunction with follow-up imaging and clinical information.
Results: Of 120 bone scans, 6 (5%) were positive and 114 (95%) were negative for bone metastasis. In the median tPSA ranges of <0.5, 0.5-1.0, and >1.0 ng/mL, scan positivity was 2.1%, 6.3%, and 30%, respectively. Patients with positive scans showed higher tPSA (1.228 vs 0.256 ng/mL; p=0.003) and shorter PSADT (3.5 vs 12.2 months; p=0.005) than those with negative scans. The most significant predictors of a positive bone scan were tPSA (>1 vs ≤1 ng/mL; OR 15.286, 95% CI 2.594-90.064, p=0.003) and PSADT (<6 vs ≥6 months; OR 17.333, 95% CI 1.618-185.646, p=0.018).
Conclusion: The detection rate of bone metastasis on bone scans in post-RP recurrent prostate cancer patients is only 5%, but the probability is much higher with tPSA >1 ng/mL and PSADT <6 months. Given its wide accessibility in Thailand, a bone scan should remain the preferred screening test for bone metastasis, with expected positive results in patients with high or rapidly rising PSA levels.

Keywords

Main Subjects


  1. Holmberg L, Bill-Axelson A, Helgesen F, Salo JO, Folmerz P, Häggman M, et al. A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. New England journal of medicine. 2002; 347(11): 781-9.
  2. Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT. Cancer control with radical prostatectomy alone in 1,000 consecutive patients. The Journal of urology. 2002; 167(2 Part 1): 528-34.
  3. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy: the 15-year Johns Hopkins experience. Urologic Clinics of North America. 2001; 28(3): 555-65.
  4. Bruce JY, Lang JM, McNeel DG, Liu G. Current controversies in the management of biochemical failure in prostate cancer. Clinical Advances in Hematology & Oncology. 2012; 10(11): 716-22.
  5. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et al. Risk of prostate cancer–specific mortality following biochemical recurrence after radical prostatectomy. Jama. 2005; 294(4): 433-9.
  6. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. European urology. 2017; 71(4): 618-29.
  7. Roehl KA, Han M, Ramos CG, Antenor JAV, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. The Journal of urology. 2004; 172(3): 910-4.
  8. Simmons MN, Stephenson AJ, Klein EA. Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy. European urology. 2007; 51(5): 1175-84.
  9. Stephenson AJ, Kattan MW, Eastham JA, Dotan ZA, Bianco Jr FJ, Lilja H, et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. Journal of clinical oncology. 2006; 24(24): 3973-8.
  10. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. Jama. 1999; 281(17): 1591-7.
  11. Okotie OT, Aronson WJ, Wieder JA, Liao Y, Dorey F, Dekernion JB, et al. Predictors of metastatic disease in men with biochemical failure following radical prostatectomy. The Journal of urology. 2004; 171(6): 2260-4.
  12. Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68 Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. European journal of nuclear medicine and molecular imaging. 2017; 44 (8): 1258-68.
  13. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA oncology. 2019; 5(6): 856-63.
  14. Pienta KJ, Gorin MA, Rowe SP, Carroll PR, Pouliot F, Probst S, et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). The Journal of urology. 2021; 206(1): 52-61.
  15. Tilki D, Van den Bergh RC, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Part II—2024 Update: Treatment of Relapsing and Metastatic Prostate Cancer. European Urology. 2024; 86(2): 164-182.
  16. Cher ML, Bianco FJ, Lam JS, Davis LP, Grignon DJ, Sakr WA, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. The Journal of urology. 1998; 160(4): 1387-91.
  17. Dotan ZA, Bianco Jr FJ, Rabbani F, Eastham JA, Fearn P, Scher HI, et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. Journal of clinical oncology. 2005; 23(9): 1962-8.
  18. Gomez P, Manoharan M, Kim SS, Soloway MS. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU international. 2004; 94(3):299-302.
  19. Kane CJ, Amling CL, Johnstone PA, Pak N, Lance RS, Thrasher JB, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology. 2003; 61(3): 607-11.
  20. Loeb S, Makarov DV, Schaeffer EM, Humphreys EB, Walsh PC. Prostate specific antigen at the initial diagnosis of metastasis to bone in patients after radical prostatectomy. The Journal of urology. 2010; 184(1): 157-61.
  21. Modoni S, Calo E, Nardella G, Ritrovato G, Frusciante V. PSA and bone scintigraphy. The International journal of biological markers. 1997; 12(4): 158-61.
  22. Moreira D, Cooperberg M, Howard L, Aronson W, Kane C, Terris MK, et al. Predicting bone scan positivity after biochemical recurrence following radical prostatectomy in both hormone-naive men and patients receiving androgen-deprivation therapy: results from the SEARCH database. Prostate cancer and prostatic diseases. 2014; 17(1): 91-6.
  23. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population‐based to a more “personalized” approach to cancer staging. CA: a cancer journal for clinicians. 2017; 67(2): 93-9.
  24. Prostate Cancer Nomograms: Post-Radical Prostatectomy. Memorial Sloan Kettering Cancer Center. 2024.
  25. Abugharib A, Jackson WC, Tumati V, Dess RT, Lee JY, Zhao SG, et al. Very early salvage radiotherapy improves distant metastasis-free survival. The Journal of urology. 2017; 197(3 Part 1): 662-8.
  26. Carrie C, Hasbini A, de Laroche G, Richaud P, Guerif S, Latorzeff I, et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. The Lancet Oncology. 2016; 17(6): 747-56.
  27. Kneebone A, Fraser-Browne C, Duchesne GM, Fisher R, Frydenberg M, Herschtal A, et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. The Lancet Oncology. 2020; 21(10): 1331-40.
  28. Parker CC, Clarke NW, Cook AD, Kynaston HG, Petersen PM, Catton C, et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. The Lancet. 2020; 396(10260): 1413-21.
  29. Pearse M, Fraser‐Browne C, Davis ID, Duchesne GM, Fisher R, Frydenberg M, et al. AP hase III trial to investigate the timing of radiotherapy for prostate cancer with high‐risk features: background and rationale of the Radiotherapy–Adjuvant Versus Early Salvage (RAVES) trial. BJU international. 2014; 113 Suppl 2: 7-12.
  30. Sargos P, Chabaud S, Latorzeff I, Magné N, Benyoucef A, Supiot S, et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. The Lancet Oncology. 2020; 21(10): 1341-52.
  31. Shipley WU, Seiferheld W, Lukka HR, Major PP, Heney NM, Grignon DJ, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. New England Journal of Medicine. 2017; 376(5): 417-28.
  32. Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. Journal of Clinical Oncology. 2016; 34(30): 3648-54.
  33. Vale CL, Fisher D, Kneebone A, Parker C, Pearse M, Richaud P, et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. The Lancet. 2020; 396(10260): 1422-31.
  34. Tilki D, Kim SI, Hu B, Dall’Era MA, Evans CP.Ultrasensitive prostate specific antigen and its role after radical prostatectomy: a systematic review. The Journal of urology. 2015; 193(5): 1525-31.
  35. Watabe T, Uemura M, Soeda F, Naka S, Ujike T, Hatano K, et al. High detection rate in [18F] PSMA-1007 PET: interim results focusing on biochemical recurrence in prostate cancer patients. Annals of Nuclear Medicine. 2021; 35(4): 523-8.
  36. Grünig H, Maurer A, Thali Y, Kovacs Z, Strobel K, Burger IA, et al. Focal unspecific bone uptake on [18F]-PSMA-1007 PET: a multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. European Journal of Nuclear Medicine and Molecular Imaging. 2021; 48(13): 4483-94.
  37. Chen MY, Franklin A, Yaxley J, Gianduzzo T, McBean R, Wong D, et al. Solitary rib lesions showing prostate‐specific membrane antigen (PSMA) uptake in pre‐treatment staging 68Ga‐PSMA‐11 positron emission tomography scans for men with prostate cancer: benign or malignant? BJU international. 2020; 126(3): 396-401.
  38. Arnfield EG, Thomas PA, Roberts MJ, Pelecanos AM, Ramsay SC, Lin CY, et al. Clinical insignificance of [18F] PSMA-1007 avid non-specific bone lesions: a retrospective evaluation. European Journal of Nuclear Medicine and Molecular Imaging. 2021; 48(13): 4495-507.
  39. Zilli T, Achard V, Dal Pra A, Schmidt-Hegemann N, Jereczek-Fossa BA, Lancia A, et al. Recommendations for radiation therapy in oligometastatic prostate cancer: An ESTRO-ACROP Delphi consensus. Radiotherapy and Oncology. 2022; 176: 199-207.