1. Shibui S. Report of brain tumor registry of Japan (1984-2000). Neurol Med Chir (Tokyo). 2009;49(Suppl):PS1-96.
2. Committee of Brain Tumor Registry of Japan. Report of brain tumor registry of Japan (2001-2004). Neurol Med Chir (Tokyo). 2014;54(Suppl):1-102.
3. Nabors LB, Ammirati M, Bierman PJ, Brem H, Butowski N, Chamberlain MC, et al. Central nervous system cancers. J Natl Compr Canc Netw. 2013;11(9):1114-51.
4. Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753-64.
5. Youland RS, Brown PD, Giannini C, Parney IF, Uhm JH, Laack NN. Adult low-grade glioma: 19-year experience at a single institution. Am J Clin Oncol. 2013;36(6):612-9.
6. Tanaka Y, Nariai T, Momose T, Aoyagi M, Maehara T, Tomori T, et al. Glioma surgery using a multimodal navigation system with integrated metabolic images. J Neurosurg. 2009;110(1):163-72.
7. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392-401.
8. Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a
PET and MR fusion image study. J Neurol Neurosurg Psychiatry. 2004;75(10):1457-62.
9. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves thediagnostic assessment of cerebral gliomas. Brain.2005;128(Pt 3):678-87.
10. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007; 48(4): 519-27.
11. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C]methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma.
J Neurosurg. 2005;103(3):498-507.
12. Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2005; 32(1):39-51.
13. The PET Nuclear Medicine Committee of the Japanese Society of Nuclear Medicine. The ninth report of a questionnaire survey on the number of PET examinations. Isotope N. 2012;697(5):26-30.
14. Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, et al. Comparative evaluation of transport mechanisms of trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]
methionine in human glioma cell lines. Brain Res.2013;1535:24-37.
15. Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, et al. Differences in transport mechanisms of trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and gliomacells: comparison with L-[methyl-11C] methionine and 2-deoxy-2-[18F] fluoro-D-glucose. Mol Imaging Biol. 2014;16(3):322-9.
16. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med.1999;40(2):331-8.
17. Akhurst T, Beattie B, Gogiberidze G, Montiel J, Cai S,Lassman A, et al. [18F] FACBC imaging of recurrent gliomas: A comparison with [11C] methionine and MRI. J Nucl Med. 2006;47(Suppl 1):79P.
18. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3-18Ffluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007; 48(1): 46-55.
19. Sasajima T, Ono T, Shimada N, Doi Y, Oka S, Kanagawa M,et al. Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F- FACBC) is a feasible alternative to11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol. 2013;40(6):808-15.
20. Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608-18.
21. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003; 58(6):657-66.
22. Kimura Y, Nishida H, Ikari Y, Matsumoto K, Oda K, Nishio T, et al. Qualification of PET cameras and imaging sites for 11C-methionine PET on brain tumor in Japan. J Nucl Med. 2014;55(Suppl 1):2060.
23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109.
24. Tanaka G, Nakazato Y. Conditional entropy as an indicator of pleomorphism in astrocytic tumors. Neuropathology. 2004; 24(3): 183-93.
25. Tanaka G, Nakazato Y. Automatic quantification of the MIB-1 immunoreactivity in brain tumors. Int Congr Ser. 2004;1259:15-9.
26. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64(3):471-81.
27. Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2015;17(11):1434-44.
28. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904-11.
29. Bell C, Dowson N, Puttick S, Gal Y, Thomas P, Fay M, et al. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma. Nucl Med Biol.2015;42(10):788-95.
30. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944-50.
31. Asano Y, Inoue Y, Ikeda Y, Kikuchi K, Hara T, Taguchi C, et al. Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med. 2011; 25(6): 414-8.
32. Inoue Y, Asano Y, Satoh T, Tabata K, Kikuchi K, Woodhams R, et al. Phase IIa clinical trial of trans-1-amino-3-18F-fluoro-cyclobutane carboxylic acid in metastatic prostate cancer. Asia Oceania J Nucl Med
Biol. 2014;2(2):87-94.
33. Sörensen J, Owenius R, Lax M, Johansson S. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40(3):394-402.
34. Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology.
2014;270(3):849–56.
35. Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[18F]FACBC positron emission tomography-computerized tomography and 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014; 191(5):1446–53.