1. Population based cancer registries. National Centre for Disease Informatics and Research. Available at: URL: http://pbcrindia.org; Accessed on April 2014.
2. Hospital based cancer registries. Indian Council of Medical Research. Available at: URL: http://icmr.nic. in; Accessed on April 2014.
3. Edge SB, Byrd DR. The lung. In: Edge SB, Byrd DR, Compton CC, Pritz AG, Greene FL, Trotti A, editors. American joint committee on cancer (AJCC) cancer staging manual. 7th ed. Chicago: Springer; 2010. P. 253-70.
4. Chang JY, Bradley JD, Govindan R, Komaki R. The Lung. In: Halperin EC, Brady LW, Wazer DE, Perez CA, editors. Perez and Brady’s principles and practice of radiation oncology. 5th ed. New York: Lippincott Williams and Wilkins; 2008. P. 1076-108.
5. Bradley J, Bae K, Choi N, Forster K, Siegel BS, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without 18F FDG PET CT fusion in dosimetric planning for non-small cell lung cancer (NSCLC): Primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys. 2012;82(1):435–41.
6. Abramyuk A, Tokalov S, Zophel K, Koch A, Lazanyi KS, Gill-ham C, et al. Is pre-therapeutical FDG- 18F FDG PET CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer? Radiother Oncol. 2009;91(3):399–404.
7. Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123(1 Suppl):137S–46.
8. MacManus MP, Hicks RJ, Matthews JP, Hogg A, McKenzie AF, Wirth A, et al. High rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys. 2001;50(2):287–93.
9. Vanuystel LJ, Vansteenkiste JF, Sroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol. 2000;55(3):317–24.
10. Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(5):1432–41.
11. Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, et al. 18F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non–small cell lung cancer. J Nucl Med. 2001;42(11):1596–604.
12. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomograpy (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys.1999;44(3):593–7.
13. Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, et al. The contribution of 18F-fluoro- 2-deoxy-glucose positron emission tomography imaging to radiotherapy planning in lung cancer. Lung Cancer. 1998;19(3):167-77.
14. Van Der Wel A, Nijsten S, Hochstenbag M, Lamers R, Boersma L, Wanders R, et al. Increased therapeutic ratio by 18FDG-PET-CTplanning in patients with clinical CTstageN2/N3M0 non-small cell lung cancer: a modelling study. Int J Radiat Oncol Biol Phys. 2005;61(3):648–55.
15. Yin LJ, Yu XB, Ren YG, Gu GH, Ding TG, Lu Z. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis. Multidiscip Respir Med. 2013;8(1):21.