Comparison of TOF-PET and Bremsstrahlung SPECT images of Yttrium-90: A Monte Carlo Simulation Study

Document Type : Original Article

Authors

1 Department of Health Sciences, Faculty of Medical Sciences, Kyushu University

2 Division of Radiology, Department of Medical Technology, Kyushu University Hospital

3 Department of Clinical Radiology, Kyushu University Hospital, Fukuoka, Japan

4 Division of Radiological Technology, Department of Medical Technology, Kyushu University Hospital

5 Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University

Abstract

Objective(s): Yttrium-90 (90Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90Y using Monte Carlo simulation codes under the same conditions and to compare them. Methods: In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. Results: The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. Conclusion: In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

Keywords

Main Subjects


  1.  

    1. Stewart JS, Hird V, Snock D, Sullivan M, Myers M J, Epenetos AA. Intraperitoneal 131I and 90Y labeled monoclonal antibodies for ovarian cancer: pharmacokinetics and normal tissue dosimetry. Int. J Cancer Suppl. 1988;3:71-6.
    2. Vriesendorp HM, Herpst JM, Leichner PK, Klein JL, Order SE. Polyclonal 90Yttrium labeled antiferritin for refactory Hodikin’s disease. Int J Radiat Oncol Biol Phys. 1989;17:815-21.
    3. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapydosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27(7):766-77.
    4. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomabtiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non- Hodin’s lymphoma. J Clin Onco 2002;20:3262-9.
    5. Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation Dosimetry Results and Safety Correlations from 90Y-Ibritumomab Tiuxetan Radioimmunotherapy for Relapsed or Refractory Non-Hodgkin’s Lymphoma: Combined Data from 4 Clinical Trials. J Nucl Med. 2003;44(3):465-74.
    6. Mansberg R, Sorensen N, Mansberg V, van der Wall H. Yttrium 90 bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumor uptake. Eur J Nucl Med Mol Imaging. 2007;34(11):1887.
    7. Minarik D, Gleisner KS, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53(9):5689- 703.
    8. Fabbri C, Sarti G, Cremonesi M, Ferrari M, Di Dia A, Agostini M, et al. Quantitative analysis of 90Y bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biotherapy & Radiopharmaceuticals. 2009;24(1):145-53.
    9. Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, et al. 90Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med. 2009;23(3):257-67.
    10. Minarik D, Gleisner KS, Linden O, Wingårdh K, Tennvall J, Strand S-E, et al. 90Y bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51(12):1974-8.
    11. Rhymer SM, Parker JA, and Palmer MR. Detection of 90Y extravasation by bremsstrahlung imaging for patients undergoing 90Y-ibritumomab tiuxetan therapy. J Nucl Med. 2010;38(4):195-8.
    12. Walrand S, Hesse M, Demonceau G, Pauwels S, Jamar F. Yttrium-90-labeled microsphere tracking during liver selective internal radiotherapy by bremsstrahlung pinhole SPECT: feasibility study and evaluation in an abdominal phantom. EJNMMI Research. 2011;1:32-45.
    13.  Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC. Development and evaluation of an improved quantitative 90Y bremsstrahlung SPECT method. Med Phys. 2012;39(5):2346-58.
    14. Shiba H, Takahashi A, Baba S, Himuro K, Yamashita Y, Sasaki M. Analysis of the influence of 111In on 90Y-bremsstrahlung SPECT based on Monte Carlo simulation. Ann Nucl Med. 2016;30(10):675-81.
    15. Lhommel R, Goffette P, van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yittrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009;36(10):1696.
    16. Werner MK, Brechtel K, Beyer T, Dittmann H, Pfannenberg C, Kupferschläger J. PET/CT for the assessment and quantification of 90Y biodistribution after selective internal radiotherapy (SIRT) of liver metastates. Eur J Nucl Med Mol Imaging 2010;37(2):407-8.
    17.  Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 2010;37(9):1654-62.
    18.  Baba S, Abe K, Isoda T, Maruoka Y, Sasaki M, Honda H. Visualization and dose estimation of 90Y-ibritumomab-tiukisetan accumulation in lymphoma patients using TOF PET/CT. J Nucl Med 2011;52:1987.
    19. Gates VL, Esmail AAH, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med 2011;52(1):72-6.
    20. Carlier T, Eugène T, Bodet-Milin C, Garin E, Ansquer C, Rousseau C, et al. Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Research. 2013;3:11-22.
    21. Tapp KN, Lea WB, Johnson MS, Tann M, Fletcher JW, Hutchins GD. The impact of image reconstruction bias on PET/CT 90Y dosimetry after radioembolization. J Nucl Med. 2014;55(9):1452-8.
    22. Willowson KP, Tapner M, The QUEST Investigator Team, Bailey DL, A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres The QUEST Phantom Study. Eur J Nucl Med Mol Imaging. 2015;42(8):1202-22.
    23. Barber TW, Yap KSK, Cherk MH, Powell A, Kalff V. Comparison of positron emission tomography/ CT and bremsstrahlung imaging following Y-90 radiation synovectomy. J Med Imaging Radiat Oncol. 2013;57(5):567-71.
    24. Elschot M, Vermolen BJ, Lam MGEH, de Keizer B, van den Bosch MAAJ, de Jong HWAM. Quantitative comparison of PET and bremsstrahlung SPECT for imaging the in vivo Yttrium-90 microsphere distribution after liver radioembolization. Plos One. 2013;8:e55742.
    25. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: The development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007;65(3):318-27.
    26. Takahashi A, Himuro K, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys. 2015;42(6):1926-35.
    27.  National Electrical Manufacturers Association (2007) NEMA Standards Publication NU 2–2007: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association.
    28. Uehara S. The development of a Monte Carlo code simulating electron-photon showers and its evaluation by various transport benchmarks. Nucl Insrum Methods Phys Res 1986;B 14(6):559-70.
    29.  Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for 123I imaging. Phys Med Biol. 2007;52(15):4409-25.
    30. Strydhorst J, Carlier T, Dieudonné A, Conti M, Buvat I. A gate evaluation of the sources of error in quantitative 90Y PET. Med Phys. 2016;43(10):5320-9.
    31. Elshot M, Lam MGEH, van den Bosh MAAJ, Viergever MA, de Jong HWAM. Quantitative Monte Carlo-based 90Y SPECT reconstruction. J Nucl Med. 2013;54(9):1557-63.
    32. Sieman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative 90Y bremsstrahlung SPECT/CT. Med Phys. 2016; 43(3): 5093-5103.
    33. Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 3rd ed. Pennsylvania: Elsevier; 2003.