1. Tsui BM, Frey EC. Analytic image reconstruction methods in emission computed tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. Singapore: Springer; 2006.
2. Hutton BF, Nuyts J, Zaidi PD. Iterative reconstruction methods. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. Singapore: Springer; 2006.
3. Shepp LA, Vardi Y. Maximum likelihood recons-truction for emission tomography. IEEE Trans Med Imaging. 1982;1(2):113-22.
4. Lange K, Fessler JA. Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Image Process. 1995;4(10):1430-8.
5. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601-9.
6. Gordon R, Bender R, Herman GT. Algebraic reconstru-ction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol. 1970;29(3):471-81.
7. Zeraatkar N, Farahani MH, Ay MR, Sarkar S. Desktop open-gantry imaging system. New York: U.S. Patent Application; 2015.
8. Zeraatkar N, Farahani MH, Rahmim A, Sarkar S, Ay MR. Design and assessment of a novel SPECT system for desktop open-gantry imaging of small animals: a simulation study. Med Phys. 2016;43(5):2581.
9. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543-61.
10. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881-901.
11. Accorsi R, Metzler SD. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging. 2004;23(6):750-63.
12. Accorsi R, Metzler SD. Resolution-effective diameters for asymmetric-knife-edge pinhole collimators. IEEE Trans Med Imaging. 2005;24(12):1637-46.
13. Jacobowitz H, Metzler SD. Geometric sensitivity of a pinhole collimator. Int J Math Math Sci. 2010;2010:915958.
14. Anger HO. Radioisotope cameras instrumentation in nuclear medicine. New York: Academic; 1967. P. 485-552.
15. Paix D. Pinhole imaging of gamma rays. Phys Med Biol. 1967;12(4):489-500.
16. Metzler SD, Accorsi R. Resolution-versus sensitivity-effective diameter in pinhole collimation: experimental verification. Phys Med Biol. 2005;50(21):5005-17.
17. Metzler SD, Bowsher JE, Smith MF, Jaszczak RJ. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imaging. 2001;20(8):730-41.
18. Bom V, Goorden M, Beekman F. Comparison of pinhole collimator materials based on sensitivity equivalence. Phys Med Biol. 2011;56(11):3199- 214.
19. Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med. 1997;24(7):797-808.
20. Hsiao IT, Rangarajan A, Gindi G. A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging. 2003;22(5):580-5.
21. Zeng GL. The ML-EM algorithm is not optimal for poisson noise. IEEE Trans Nucl Sci. 2015;62(5):2096- 101.
22. Gaitanis A, Kontaxakis G, Spyrou G, Panayiotakis G, Tzanakos G. Log-likelihood-based rule for image quality monitoring in the MLEM-based image reconstruction for PET. IEEE Nucl Sci Conf Res. 2009;9:3262-8.